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Gravitational model of the three elements theory: mathematical details calculations 
 
This document is intended to collect each detailed calculations regarding the mathematical basis of 
the gravitational model of the three elements theory. 
 

 
 

1. GEODESIC TIME-LINE EQUATIONS FOR THE MINKOWSKIAN 
AND RIEMANNIAN METRICS 

 
The aim of this calculation is to prove that time line geodesics in the Minkowskian metric are time 
line geodesics in the Riemannian metric. 
 
The method is the following. 
 

1) The geodesic equations of the Minkowskian metric are written. 
2) They are simplified using those restrictions. 

a) A specific system of inertial reference frames (bases) is used. In this system of bases, the 
metric matrixes are diagonal. It is the classical “normal map” of General Relativity. 

b) It is supposed that only weak space-time deformations occurs. 
c) It is supposed that infinitely far away from the location of our study, the deformations are 

null (like in the case of the Schwarzchild metric study). 
d) Only time line trajectories are studied. (What is called “time line” here is a coordinate 

curve in the “exponential map” of the metric, that is, a time coordinate curve in the system 
of bases in which the metric matrixes are diagonal). Let’s remind that these are the 
trajectories of a free falling particle initially at rest when located infinitely far, (and with a 
null mass at rest). 

3) Steps 1) and 2) are executed with the Riemannian metric. This metric is constructed by 
inversion of the Minkowskian coefficients in its diagonal matrixes and of course opposite sign 
for the space coefficients. Caution must be applied : 1) the system of bases in which those 
Riemannian metric matrixes are diagonal might not be the same as the corresponding one in the 
Minkowskian metric. 2) Rigorously speaking, it must be proven that such a Riemannian metric 
can be constructed and coherent in such a way. Also, let’s remind that a time line in the 
Riemannian metric is still a geodesic in this metric but might not be the trajectory af a free 
falling particle.  

4) For allowing further comparison, Minkowskian metric geodesic equations (found at the end of 
step 2) are written using the Riemaniann metric coefficients and the Riemannian local time. 

5) Comparison of Minkowskian time line equations (yielded at the end of step 4) and Riemannian 
time line (yielded at the end of step 3) equations is done. The aim result is that they must be the 
same in the approximation used context. 
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Therefore, more precisely, the aim is proving that, in the Riemannian metric, a time line is 
approximately also a time line in the Minkowskian metric, and vice versa, in the specific case of the 
weak space-time deformations. 
The restrictions are the weak space-time deformations case. This restriction has no incidence since 
until now only time line trajectories in the weak deformations case has been used in the study of the 
gravitational model of the three elements theory. 
 
 
1) Riemannian metric 
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Extradiagonal metric coefficients are null everywhere, because we can choose such a system of 
bases which yield diagonal metric matrixes. Therefore their derivatives are null and we get the 
following. 
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It has been used 10 0g = . Of course, it is always possible to find a system of bases in which the 

metric matrixes are diagonal. Therefore, the derivative of those extra-diagonal coefficients is always 
null. 
 
It has been used also 1 0x / r /τ τ∂ ∂ = ∂ ∂ ≃ along the considered trajectory.  
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This is because only a particular case of trajectories will be studied. This case is a free falling 
particle initially with a null speed and located infinitively far from the attracting mass, (with a null 
mass). 
 
Therefore, the equations (1) above becomes the following. 
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And this is the maximum trajectories in the pseudo-riemannian Minkowskian metric. They are 
known to be free falling particle’s trajectories.  
 
Now replacing g by h and τ by τ’ we get the equations of the minimal trajectories in the Riemannian 
metric: 
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Those equations are no longer the free falling particle’s trajectories. But the aim of this note is to 
prove that they remain a good approximation of the free falling particle’s trajectories in the case of 
the weak space-time deformations. 
 
For this to be proven, we start from equations (2), and we substitute the g coefficients by the h 
coefficients, and the τ variable by the τ’ variable. 
 
2) Minkowskian metric 
 
Therefore, let’s start from equations (2) : 
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Now let’s express those equations with the help of the Riemannian h coefficients. We get the 
following relationships between the two metric g and h coefficients. 
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Therefore, the Minkowskian extremal trajectories now follow those two equation rules. 
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Finally, we get the following. 
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Now let’s replace this Minkowskian local time τ by the Riemannian local time τ’. We get the 
following relationships. 
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Therefore, using equations (5), (6), (8), and (9), the extremal trajectories first equation (5) becomes 
now the following. 
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Let’s notice the last simplification and the same final result as the first equation of the Riemannian 
metric geodesics. 
That is to say that the first equation of (2) is equivalent to the first equation of (3). 
 
The extremal trajectories second equation (6) becomes now the following. 
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Finally, with (10) and (11), we get the following equations of the Minkowskian metric extremal 
trajectories expressed with the help of the h Riemannian coefficients and the τ’ Riemannian local 
time : 
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Minkowskian metric extremal trajectories expressed with Riemannian h coefficients and 
Riemannian ττττ’ local time  

 
3) Comparison 
 
Now it remains to compare those equations (12), with the equations of the minimal trajectories in the 
Riemannian metric, namely equations (3) : 
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Riemannian metric extremal trajectories 
 
The final work consist only of comparing equations (12), and equations (13). 
The first equation of (12) is exactly the same as the first equation of (13).  
Therefore, the only work to do is comparing the last equation of (12), and the last equation of (13).  
Those last equations are the same if  11 1h ≃ , which is always true in the studied cases. 

 
As a conclusion, the time line geodesics in the Minkowskian metric are approximately the time 
line geodesics in the Riemannian metric. The used case for these approximations is the weak 
space-time deformations case. 
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2. EXISTENCE OF THE SEARCHED RIEMANNIAN METRIC 
 

When constructing the Riemannian metric in this note, the correctness of this construction must be 
proven. 
For example, if we suppose that this Riemannian metric is such as its matrixes are diagonal in the 
same system of diagonalising bases as the Minkowskian one, then this metric is not legal. Indeed, 
the calculations above has proven that, if this could be a valid Riemanninan metric, then its time 
lines would not be exactly geodesics (but only approximatively). But this approximation is not 
enough from a mathematical point of view, because it should be exactly geodesics. If this is not the 
case, then it means that the constructed metric is not a valid one. In other words, it means that, when 
a Riemannian metric is searched such as its coefficients are inversed with respect to the 
Minkowskian diagonalised one (and with opposed sign for the space coefficients), then it generates 
non nul extra-diagonal coefficients. That’s for sure. However, it is still unclear even with some new 
extra-diagonal non null coefficients, that the resulting Riemannian metric is still a valid one. 
For proving the validity of this Riemannian metric, it will be supposed that the existence of this 
metric is equivalent to the existence of solutions for its geodesic equations (that is, equivalent to the 
validity of the corresponding geodesics). 
Therefore, the calculations will be quite straight forward. We just write the geodesics equations 
resulting from this supposed Riemannian metric, and we try to prove the existence of solution for 
each initial case. 
 
Those equations are the following. 
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this case will be studied. That’s saying there are only 2 equations, and only dimension 0 and 1 : 
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Now let’s take the case of the Schwarzchild metric. Let’s write r the distance from the attracting 
mass, as usual. 
Each times a hαβ or a hαβ coefficient is a known function of r when α β= , and becomes a unknown 

variable when α β≠ . Here, with 2n = , there is only one unknown variable which is 01 10h h= , and 

we have : 
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Therefore, 00
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x

∂
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has terms of the form 01
0

g

x

∂
∂

 which is unknown. 

As a conclusion, the differential system of equations is quite complicated. 
The problem is much easier to address from the opposite sense. This is the method adopted in this 
note. The Minkowskian coefficients are first calculated only in a system of bases in which the 
matrixes are diagonals. Then the Riemannian diagonal coefficients are constructed from the 
Minkowskian one, but it is still supposed that those Riemannian matrixes are diagonals. Therefore, 
the calculations are much easier and the result is that the Riemannian time line geodesics are 
approximately the Minkowskian ones. But the issue with this method is of course that the two 
metrics do not share any more the same system of bases which allows those diagonal matrixes. 
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3. EXTREMUM TYPES 
 
The aim is to prove the sign of each extremum. We must prove that a Minkowskian metric geodesic 
is a maximum extremum, and that a Riemannian metric geodesic is a minimum extremum. 
 
This has been found to be quite heavy to calculate in the general case. 
Therefore, this will be proven in the specific case of time line trajectories. Indeed, this is enough for 
the scope of our study, since it is proven in this note that, a Riemannian time line is approximately a 
Minkowskian time line and vice versa, in the case of the weak space-time deformations. 
 
Let’s write the general equation of an action for some given metric g : 
 

2 20 1

00 11

x x
A g g dτ

τ τ
   ∂ ∂= +   ∂ ∂   

∫  

 
Let’s modify the trajectory in the following way : 
 

1 1x x r f ( )τ→ +   

 
Where f ( )τ is a function of the τ  parameter, and << r >> is a real variable used to modify the 
trajectory. 
With this modelisation, we get : 
 

2 20 1

00 11

x xA
g g d

r r
τ

τ τ
   ∂ ∂∂ ∂= +   ∂ ∂ ∂ ∂   

∫  

1
2 2 2 220 1 0 1

00 11 00 11

x x x xA
g g g g d

r r
τ

τ τ τ τ

−
          ∂ ∂ ∂ ∂∂ ∂
   = + +          ∂ ∂ ∂ ∂ ∂ ∂          
∫  

Now the classical method will be used. We force τ  to be the space-time distance parameter, such as 
2 20 1

00 11 1
x x

g g
c cτ τ
   ∂ ∂+ =   ∂ ∂   

   And that is the local time parameter as usual. 

Therefore, the last equation becomes : 
2 20 1

00 11

1 x xA
g g d

r c r
τ

τ τ

    ∂ ∂∂ ∂
 = +    ∂ ∂ ∂ ∂    

∫  

2
1

2
g x x ² xA

g d
r c r r

µ µ µ
µµ

µµ τ
τ τ τ

 ∂  ∂ ∂ ∂∂
 = +  ∂ ∂ ∂ ∂ ∂ ∂  
∫     with 0 1,µ =  

 
Let’s try to compare the two metric derivatives of actions, by the way : 
 

2 20 0 0 1 1 1
00 11

00 11

1
2 2

g x x ² x g x x ² xA
g g d

r c r r r r
τ

τ τ τ τ τ τ

    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂
 = + + +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
∫  
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2 21 1 1
00 11

00 11

00 00 00

1
2 2

g g x x xA c c c
g g d

r c r r r rg g g
τ

τ τ τ

        ∂ ∂ ∂ ∂ ∂∂ ∂ ∂    = + + +       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂        
∫  

2 21 1 1
00 00 11

00 113

200 00
00

1 1 1
2 2

2

g g g x x xA c c²
g g d

r c r r r rg g g

τ
τ τ τ

      ∂ ∂ ∂ ∂ ∂ ∂∂ ∂  = − + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂      

∫  

( )21 1
00 00 11

11
00 00

1
2

fg g g x xA c² c²
g d

r c r g g r r

τ
τ

τ τ τ

 ∂ ∂ ∂ ∂ ∂ ∂∂
 = − + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂  
∫  

( )21 1
11

11

1
2m

fA g x x
g d

r c r

τ
τ

τ τ τ

 ∂ ∂ ∂ ∂ ∂
 = +  ∂ ∂ ∂ ∂ ∂  
∫  

Or : 

( )21 1
11

11

1
2r

g 'A h x x
h d '

r c r ' ' '

τ
τ

τ τ τ

 ∂ ∂ ∂ ∂ ∂
 = +  ∂ ∂ ∂ ∂ ∂  
∫  

 
 
 

( )21 1
11

11

1
2m

fA g x x
g d

r c r

τ
τ

τ τ τ

 ∂ ∂ ∂ ∂ ∂
 = +  ∂ ∂ ∂ ∂ ∂  
∫

( )21 1

11 11

1 1 2m
fA x x' ' '

d '
r c r h ' h ' ' '

ττ τ τ τ τ
τ τ τ τ τ τ τ

 ∂  ∂ ∂ ∂∂ − ∂ ∂ ∂ ∂
 = −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
∫  

( )21 1
11

11 11 11 112
11 11

1 1 2m
fA h x x

h h h h d '
r c h r ' h ' '

τ
τ

τ τ τ

 ∂ ∂ ∂ ∂ ∂
 = −  ∂ ∂ ∂ ∂ ∂  
∫  

( )21 1
211

11 11

1
2m

fA h x x
h h d '

r c r ' ' '

τ
τ

τ τ τ

 ∂ ∂ ∂ ∂ ∂
 = −  ∂ ∂ ∂ ∂ ∂  
∫  

 
To be compared with (above) : 
 

( )21 1
11

11

1
2r

g 'A h x x
h d '

r c r ' ' '

τ
τ

τ τ τ

 ∂ ∂ ∂ ∂ ∂
 = +  ∂ ∂ ∂ ∂ ∂  
∫  

 
This is not enough but probably too approximated…. It should also probably need an integration by 
part and the using of the value of the derivative on the geodesic trajectory (equal to 0)…. To be 
worked. Anyhow the best for comparing the first derivatives of the actions is to work with the 
geodesic equations as it is done in this note. 
 
Let’s restart from the general equation above : 
 

( )21
2

A
g v g v v d

r c µµ µ µµ µ µ τ∂ = +
∂ ∫ ɺ ɺ    where  

g
g

r
µµ

µµ

∂
=

∂
ɺ ,

x
v

µ

µ τ
∂=
∂

, 
² x

v
r

µ

µ τ
∂=
∂ ∂

ɺ  
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This is not only true for a geodesic equation but in the general case, therefore, now we can derivate 
once again : 
 

( )2 21
4 2 2

² A
g v g v v g v g v v d

r² c µµ µ µµ µ µ µµ µ µµ µ µ τ∂ = + + +
∂ ∫ ɺɺ ɺ ɺ ɺ ɺɺ   After a little calculation. 

 

Now, using ( ) ( )2 20 1
00 11c²d ² g dx g dxτ = + , it should be possible to get the result in the general case. 

But this gives heavy calculations. Let’s calculate this in a more particular case, the time line case. 

In this case, we get 
1

0
x

τ
∂ =
∂

. Under this condition, the last equation becomes the following. 

( )2 2 2
00 0 00 0 0 00 0 00 0 0 11 1

1
4 2 2 2

² A
g v g v v g v g v v g v d

r² c
τ∂ = + + + +

∂ ∫ ɺɺ ɺ ɺ ɺ ɺɺ ɺ  

Now we can use simply :  

0

00

1
v

g
=   

3

2
0 00 00

1

2
v g g

−
= −ɺ ɺ   ( )

5
22

0 00 00 00 00

1
3 2

4
v g g g g

−
= −ɺɺ ɺ ɺɺ  

Substituting this into the time line action equation above, the temporal term vanishes, and it yields 
the following equation. 

2
11 1

2² A
g v d

r² c
τ∂ =

∂ ∫ ɺ   (13’) 

Now, using a Minkowskian metric, the equation is the same as above, g being the Minkowskian 
metric coefficient. 
The second derivatives of the Minkowskian action is : 

2
11 1

2m² A
g v d

r² c
τ∂ =

∂ ∫ ɺ  

Therefore, this second derivative of mA  is negative (since 11g  is negative). Therefore the 

Minkowskian geodesic is a maximal extremum. 
And using a Riemannian metric, equation, the second derivatives of the Riemannian action is : 

2
11 1

2r² A
h v d '

r² c
τ∂ =

∂ ∫ ɺ   

which can be written, using the g coefficient for comparison, and 00d ' h dτ τ=  : 

2
1

2r² A
v d

r² c
τ∂ =

∂ ∫ ɺ  

Therefore, this second derivative of rA  is positive and the Riemannian geodesic is a minimal 

extremum. 
The final result is the following : 

• The Minkowskian geodesic is a maximal extremum. 
• The Riemannian geodesic is a minimal extremum. 
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4. REWRITING USING THE SPACE-TIME SLOPE  
 
Let’s rewrite equations (12) (Minkowskian time line geodesic equations) using the space-time slope. 
It will be used :  11 00h g cos²( )= = α   00 111 1h / h / cos²( )= = α  

 
Equations (12) becomes : 
 

( )

20

0

21
3

1

1 1

2

1 1

2

x ct
cos²( )

' ' x cos²( ) '

x ct
cos²( )

' ' x cos²( ) '

α
τ τ α τ

α
τ τ α τ

   ∂∂ ∂ ∂ = −    ∂ ∂ ∂ ∂   

   ∂∂ ∂ ∂ =    ∂ ∂ ∂ ∂   

 

 

( )

2

2
3

1 1

2

1 1

2

ct ct
cos²( )

' ' ct cos²( ) '

x t ct
cos²( )

' t ' x cos²( ) '

α
τ τ α τ

α
τ τ α τ

 ∂ ∂ ∂ ∂   = −     ∂ ∂ ∂ ∂    

 ∂ ∂ ∂ ∂ ∂   =     ∂ ∂ ∂ ∂ ∂    

 

 

( ) ( )

( ) ( )

2

3 2

1 1

2

1 1

2

ccos( ) cos²( ) ccos( )
' ct cos²( )

x
cos( ) cos²( ) ccos( )

' t x cos²( )

α α α
τ α

α α α
τ α

 ∂ ∂= −  ∂ ∂  

 ∂ ∂ ∂  =   ∂ ∂ ∂   

 

 

( ) ( )

( ) ( )
( )

( )

2

8

3

1 1

2

2

2

t
cos( ) cos²( ) cos( )

' t t cos²( )

cos( ) x x c²
cos( ) cos( ) sin( )

' t ' t x cos( )

α αα α α
τ α α α

α αα α α
τ τ α

 ∂ ∂ ∂ ∂ ∂= −  ∂ ∂ ∂ ∂ ∂  

 ∂ ∂ ∂ ∂ ∂ −   + = −   ∂ ∂ ∂ ∂ ∂   

 

 
 

( )
( )

( ) ( )

( ) ( )

4

3

5

1 2

2
cos( ) sin( ) sin( ) cos( )

t t cos( )

cos( )t x t x
cos( ) c² cos( ) sin( )

' t t ' t t x

α αα α α α
α

αα αα α α
τ α τ

 ∂ ∂ −
 − = − −
 ∂ ∂
 

∂∂ ∂ ∂ ∂ ∂ ∂ ∂ + = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

 
 

5

cos( )sin( ) cos( )sin( )
t t

x ² x
cos( )sin( ) cos²( ) c² cos ( )sin( )

t t t² x

α αα α α α

α αα α α α α

∂ ∂− = −
∂ ∂
∂ ∂ ∂ ∂− + =
∂ ∂ ∂ ∂

 

 
 

3

1 1

² x x
c² cos ( )sin( ) tan( )

t² x t t

α αα α α

=
∂ ∂ ∂ ∂= +
∂ ∂ ∂ ∂

      This first equation is trivial. 
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Let’s work only the second equation. There is 0
x

t

∂ =
∂

therefore: 

3² x
c² cos ( )sin( )

t² x

αα α∂ ∂=
∂ ∂

 

4² x
c² cos ( )tan( )

t² x

αα α∂ ∂=
∂ ∂

 

4² x tan( )
c² cos ( )tan( )

t² x

αα α∂ ∂=
∂ ∂

  (14) 

Substituting cos( )α  by 
1

1
2

e
e

+

+
 (postulate 3), with 

8R

xe
s

= (galaxy model), and 1M G
R

c²
= , where 

1M  is the attracting mass, G the gravitational constant, and c, light speed, we get : 

 

( )4 1

e²
tan²( )

e
α =

+
, and 

( )

4

4 1

2

² x tan( )
c² cos ( )tan( )

t² x
tan²( )² x

c² cos ( )
t² x

αα α

α
α

∂ ∂=
∂ ∂

∂∂ =
∂ ∂

   yields : 

( )

4

1 1

2 4 11
2

² x e e²
c²

et² x e

 
  ∂ + ∂=     ∂ ∂ +  +

 

 

( )2

4

1

8 1
1

2

e² x c² e²

t² x ee

+∂ ∂  =  ∂ ∂ +  + 
 

 

( ) ( )
( )

2

4 2

1 2 1

8 1
1

2

e e e e²² x c² e

t² xee

+ + −∂ ∂=
∂ ∂+ + 

 

 

( )
( )

2

4 2

1
1 2

4 1
1

2

e
e

e² x c² e

t² xee

 + +∂ ∂ =
∂ ∂+ + 

 

 

34
1

2

² x c² e e

t² xe

∂ ∂=
∂ ∂ + 

 

    (15) 
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Now substituting with

8R

xe
s

= , we get 

:

3

2

3

2

8 8 1 8 88
2 8

2 8

22

R R s x R R sR s sx x x xe R x² x xx
x x s s² s²

R R s
s sx x s xx R x
s² s²

x

 ∂ ∂  − ∂ −  −   ∂ ∂∂ ∂ ∂    = = =
∂ ∂  

 
 

∂− − ∂∂ +
∂= = −

 

And (15) becomes : 

34
1

2

² x c² e e

t² xe

∂ ∂=
∂ ∂ + 

 

 

3 3

2

8

22

4 8
1

1
2

i

R
sx s x² x c² R s x

t² s²Rx
x

s

∂+∂ ∂= −
∂  

 
 +
 
 
 

 

32

2

2i

s
s x² x Rc² x

t² x R
s

x

∂+∂ ∂= −
∂  

+ 
 

 

32

2

2i

s
s x² x Rc² x

t² x R
s

x

∂+∂ ∂= −
∂  

+ 
 

  (16) 

 
“Galactic” case, with s != 1, and x>>R : 

1
2 3

2
s

s xM G² x x
t² x s

∂+∂ ∂= −
∂

  with s = 1+f = 1+r/x for instance, which gives as usual: 

1
32

1 2

1

r r
x

M G² x x x x
t² x r

x

∂  + +  ∂ ∂  = −
∂  + 

 

 

1
32

1 2

1

r r
M G² x x x

t² x r

x

+ −∂ = −
∂  + 

 

 

( )1 3

² x x r
M G

t² x r

∂ −= −
∂ +
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Approximation with s=1, and x>>R : 

3

2

2
1

i

² x Rc² R

t² x x

−
 ∂ = − +  ∂  

 

( )( )
2

3 42 2
1 3

2i

² x Rc² R R

t² x x ! x

 − −∂ − − +  ∂  
≃  

2

2 12
1 3

i

² x Rc² R R

t² x x x

 ∂ − − +  ∂  
≃  

1
2

2 12
1 3

M G² x R R

t² x x x

 ∂ − − +  ∂  
≃  

1
2

2 12
1 3

M G² x R R

t² x x x

 ∂ − − +  ∂  
≃    (17) 

 
Approximation of the Minkowskian coefficient 00g with s=1, and x>>R : 

2
00g cos ( )α=  

2

00 2

1 1

1 12 2

e e
g

e e

 
 + += = 

  + +    

 

( ) ( ) ( )( ) ( )( )( )2 2 3

00

2 3 2 3 4
1 1 1 1 2

2 2 2 2 3 2

e e e e
g e e

! !

−  − − − − −     = + + + − + +             
≃  

( )
3

00

3
1 1

4 2

ee²
g e e

 
+ − + − 

 
≃  

3 3

00

33
1

4 2 4

e ee²
g e e e²− + − + − +≃  

3

00 1
4 4

ee²
g − +≃  

2 3

00

1 8 1 8
1

4 4

R R
g

x x

   
− +      

   
≃   with 1M G

R
c²

= , and 1M  being the attracting mass. 

00

2 2 8
1

R R R
g

x x x
− +≃  

00

2 8
1 1

R R
g

x x

 
− −  

 
≃  

00 1 1 2
M M

g
x x

 
− −  

 
≃    with 12

2
M G

M R
c²

= =  being the Schwartzchild ray. 

1 1
00

2 22
1 1

M G M G
g

c² x c x

 
− −  

 
≃   (18) 

As calculated in the “Pioneer anomaly document” (PioneerExpl.doc). 
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5. EXACT RESULTS 

 
This describes other possible equations related to the "Gravitational Model of the Three Elements Theory," Journal 
of Modern Physics, Vol. 3 No. 5, 2012, pp. 388-397. 

 
α α

α
=

− 3/2

d tan( ) tan( )
������ ������ ²� ���

dx (1 tan²( ))
F mc        (19) 

could be replaced by : 
4 dtan(α)

F    =    mc²cos (α)tan(α)
dx

        (20) 

 
 
and 

3/2

2 2

2 '
2

'
=

² 8 ' 8 ' 2 '
+

R ds
s s x

x dxmMG
F

x R R R
s s s s

x x x

    +  +   
    −  

 
+ − 

 

        (21) 

could be replaced by : 

3

2

2

s
s xmMG' xF

x² R'
s

x

∂+
∂= − 

 
+ 

 

        (22) 

 
But this would have no incidence in the final overall result. 
(Of course, now above M is the attracting mass, and G’ is the gravitational constant valid infinitely 
far from the attracting mass, therefore G’ value is very close to G value in usual cases). Also : 

 
Planet GR value 3elt value 
Mercury  42.7848 GR value – 0.0014 
Saturn 1.66291 GR value + 0.00056 

 
should be replaced by : 
 

Planet  GR value  3elt value  
Mercury  42.7848  GR value + 0.0044  
Saturn  1.66291  GR value + 0.00061  

 
But this has no incidence on the overall result which is the fact that those differences aren’t strong 
enough, taking in mind that the model is not correct (solar system is not constaly filled with matter 
and therefore anyway those calculations must be re-executed using a varying matter density). 
 
Relative erratum error :  

( )α α
−∂  = − ∂ 

31
4 2 2

²
��� ���cos ( ) 1 tan ( )

²

x
Err

t
      Equation (20) over equation (19). 

3
1 4

22
1 1

² x R R
Err

t² x x

−∂     − −     ∂     
≃  

1
4 3

1 1
² x R R

Err
t² x x

−∂    − −    ∂    
≃  
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1
7

1
² x R

Err
t² x

−∂  − ∂ 
≃  

² x R

t² x
 This check that equation (17) is correct, because it is equation 1

2

2 19
1 3

M G² x R R

t² x x x

 ∂ − − +  ∂  
≃ , available 

in the document mystmass.pdf, (equation number (17)), but to its right factor must be added this 

value  7R

x
− .  

The final result can be written  
177

1 1
M GR

MinkowskianOverMystmassdoc RelativeError
x c² x

− = −≃    (23) 

 
 
Now using equations (12), and (13), if we write the right term of last equation (12) over the right 
term of last equation (13), there is also : 

 ( )
4 8

44
11

8
1 1 1

M R R
MinkowskianOverRiemmannian RelativeError h cos²( )

r x x
α   = = − = = − −   

   
≃  

188
1 1

M GR
MinkowskianOverRiemmannian RelativeError

x c² x
− = −≃  

 
And finally : 

( )α α
−

−∂  = − ∂ 

31
4 2 2

²
��� ���cos ( ) 1 tan ( )

²

x
Err

t
  Last equation (13) over equation (19). 

−∂     = − −     ∂     

1 -4 3/2
² 2

��� ��� 1 � 1  ��
²

x R R
Err

t x x
 

−∂    + −    ∂    
≃

1
² 4 3

��� ��� 1 � 1  ��
²

x R R
Err

t x x
 

−∂  + ∂ 
≃

1
²

��� ���1 ��
²

x R
Err

t x
 

11 1
M GR

RiemmannianOverMystmassdoc RelativeError
x c² x

− = −≃   (24) 
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Intermediate conclusion about the limited developments : 
 

Riemmann � 1-R/x  �   Mystmass � 1-7R/x  �  Minkowski. 
 
Version Equation Equation with the slope angle 
Minkowski 
(correct one) 1

3

2

2

s
s xmM G' xF

x² R
s

x

∂+
∂= − 

 
+ 

 

 
4 dtan(α)

F    =    mc²cos (α)tan(α)
dx

 

Old one 
”mystmass.doc” 

1
3/2

2 2

2 '
2

'
=

² 8 ' 8 ' 2 '
+

R ds
s s x

x dxmM G
F

x R R R
s s s s

x x x

    +  +   
    −  

 
+ − 

 

 

α α
α

=
− 3/2

d tan( ) tan( )
������ ������ ²� ���

dx (1 tan²( ))
F mc  

Riemannian 
time-line 
geodesic 

Not interesting -4 dtan(α)
F    =    mc²cos (α)tan(α)

dx
 

 
Version Approximation 1s  ≃  Approximation x R'≫  
Minkowski 
(correct one) 

1
3

1

2
1

mM G'
F

x² R'

x

= − 
 

+ 
 

 
1

3

2
s

s xmM G' xF
x² s

∂+
∂= −  

Old one 
”mystmass.doc” 1

3/2

2 '
1

'
=

² 8 ' 8 ' 2 '
1+ 1

R
mM G xF

x R R R

x x x

 +  
  −  

 
+ − 

 

 1

2 2

2'
=

² +

ds
s xmM G dxF

x s s s

 +
  −   

Riemannian 
time-line 
geodesic 

Not interesting Not interesting 

 
Version Limited development 
Minkowski 
(correct one) 1 2 12

1 3
M G'² x R' R'

² x² x xτ
 ∂ − − +  ∂  

≃  

Old one 
”mystmass.doc” 1 2 19

1 3
M G'² x R' R'

² x² x xτ
 ∂ − − +  ∂  

≃  

Riemannian 
time-line 
geodesic 

1 2 20
1 3

M G'² x R' R'

² x² x xτ
 ∂ − − +  ∂  

≃  

 
G’ is the gravitational constant valid infinitely far from the attracting mass, therefore G’ value is 
very close to G value in usual cases. 
 

1

2

M G' M '
R'

c²
= =
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WRITING GEODESIC EQUATIONS WITH MINKOWSKIAN 
COEFFICIENTS  
 
That’s the more natural way to calculate. It will check the above results. Starting from equation (2) : 
 

22 0 0
00 00

0

1

2

gx x
g

² xτ τ
 ∂∂ ∂= −  ∂ ∂ ∂ 

 

22 1 0
11 00

1

1

2

gx x
g

² xτ τ
 ∂∂ ∂=  ∂ ∂ ∂ 

 

Since 11
00

11

1
g g

g
= = − , last equation can be written : 

22 1 0
00

00 1

1

2

gx x
g

² xτ τ
 ∂∂ ∂= −  ∂ ∂ ∂ 

 

Now it must be used also, because the trajectory is a time line : 
0

00 00

x ct t dt c
c c

g dt gτ τ τ
∂ ∂ ∂= = = =
∂ ∂ ∂

. Therefore there is : 

2
1

00 00 00
00 001 1 1

0000

1 1

2 2 2

g g g² x c c² c²
g g

² x x g xgτ

 ∂ ∂ ∂∂
 = − = − = −
 ∂ ∂ ∂ ∂
 

 

And equations (2) are also finally : 
 

2 0
2 00

00 02

gx c²
g

² xτ
− ∂∂ = −

∂ ∂
                         (25) 

2 1
00
12

gx c²

² xτ
∂∂ = −

∂ ∂
 

Which is Minkowskian time line geodesic equations. 
 
Now let’s restart from equations (3): 

22 0 0
00 00

0

1

2

hx x
h

' ² x 'τ τ
 ∂∂ ∂= −  ∂ ∂ ∂ 

 

22 1 0
11 00

1

1

2

hx x
h

' ² x 'τ τ
 ∂∂ ∂=  ∂ ∂ ∂ 

 

 
There is : 

2 0 0 0 0 0
200

00 00 00 00

gx x x x ² x
g g g g

' ² ' ' ²

τ τ
τ τ τ τ τ τ τ τ τ τ

    ∂∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂= = = +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

 
Therefore first equation of (3) is also the following. 
 

20 0 0
200

00 00 00 0
00

1 1

2

g x ² x x
g g g

² x g 'τ τ τ τ
  ∂ ∂ ∂ ∂∂+ = −   ∂ ∂ ∂ ∂ ∂  
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20 0 0
1 300 00

00 00 2 0
00

1 1

2

g g² x x x
g g

² g x '

τ
τ τ τ τ τ

−  ∂ ∂∂ ∂ ∂∂= − +  ∂ ∂ ∂ ∂ ∂ ∂ 
 

20 0 0 0
1 00 00

00 000 2 0
00

1 1

2

g g² x x x x
g g

² x g xτ τ τ τ
−  ∂ ∂∂ ∂ ∂ ∂= − +  ∂ ∂ ∂ ∂ ∂ ∂ 

 

2 20 0 0
1 100 00

00 000 0

1

2

g g² x x x
g g

² x xτ τ τ
− −   ∂ ∂∂ ∂ ∂= − +   ∂ ∂ ∂ ∂ ∂   

 

20 0
1 00

00 0

1

2

g² x x
g

² xτ τ
−  ∂∂ ∂= −  ∂ ∂ ∂ 

 

 
There is : 

2 1 1 1 1 1 1
2 200

00 00 00 00 00

gx x x x ² x ² x
g g g g g

' ² ' ' ² ²

τ τ
τ τ τ τ τ τ τ τ τ τ τ

    ∂∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂= = = + =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
 

 
Therefore last equation of (3) is also the following. 

22 1 0
11 00

1

1

2

hx x
h

' ² x 'τ τ
 ∂∂ ∂=  ∂ ∂ ∂ 

 

21 0
2
00 1

00 00

1 1 1

2

² x x
g

² g x g '

τ
τ τ τ

   ∂ ∂∂ ∂=    ∂ ∂ ∂ ∂  
 

21 0
3 00

00 002 1
00

1 1

2

g² x x
g g

² g xτ τ
−  ∂∂ ∂= −  ∂ ∂ ∂ 

 

21 0
3 00

00 1

1

2

g² x x
g

² xτ τ
−  ∂∂ ∂= −  ∂ ∂ ∂ 

 

 
Now it must be used also, because the trajectory is a time line : 

0

00 00

x ct t dt c
c c

g dt gτ τ τ
∂ ∂ ∂= = = =
∂ ∂ ∂

. Therefore there is : 

2
1

3 3 400 00 00
00 00 001 1 1

0000

1 1

2 2 2

g g g² x c c² c²
g g g

² x x g xgτ
− − −

 ∂ ∂ ∂∂
 = − = − = −
 ∂ ∂ ∂ ∂
 

 

And equations (3) are also finally : 
 

0
2 00

00 02

g² x c²
g

² xτ
− ∂∂ = −

∂ ∂
                         (26) 

1
4 00

00 12

g² x c²
g

² xτ
− ∂∂ = −

∂ ∂
 

Which is Riemannian time line geodesic equations, written using Minkowskian coefficients and 
local time for comparison. 
 
Now the comparison is between equations (25) and (26) and is a little bit easier to understand (with 
Minlowskian variables). 



         Frédéric LASSIAILLE © 2011                             Page 23                                         09/08/2013 

Frédéric LASSIAILLE  2011 Page 23                                              
 

 
Let’s verify the calculations above with this new formulation. That’s the Riemannian trajectory: 

1
4 00

00 12

g² x c²
g

² xτ
− ∂∂ = −

∂ ∂
 

( )( ) ( )( )
1 42 2

2

² x c²
cos( ) cos( )

² x
α α

τ
−∂ ∂= −

∂ ∂
 

8

1

2

1 1

2 1 12 2

² x c² e e
e² x eτ

−      ∂ + ∂ + = −    ∂ ∂   + +      

 

( )

( )
8 2

1

4 4

1
1 1 1 2 1

2 2 2 2
2 1

1
2

e e e
e

² x c² e

² xe eτ

     + + − + +     ∂ ∂     = −
∂ ∂+  + 

 

 

( )

41

4

3
1 1

4 2 2
1

2 2 1

e² e e²
e

² x c² e e

² xeτ

   + + − + +   ∂ ∂     = − + ∂ ∂  +
 

( )

5

1

4

1
2

4 1

e
² x c² e

e
² xeτ

 + ∂ ∂ =
∂ ∂+

 

Now using 
8 1 8

2

e R R

x x x e x²

 ∂ ∂  = = −    ∂ ∂   
 : 

( )

5

1

4

1
1 82

4 21

e
² x c² R

e
² e x²eτ

 + ∂   = − ∂  +
 

( )

5

4

1
2

1

e
² x Rc²

² x² eτ

 + ∂  = −
∂ +

 

Limited development: 
5 5 4 4 5

1 4 1 4
2 2 2

² x Rc² e ( )( ) ( )( )
e² / e e²

² x² ! !τ
∂ − −   − + + − +   ∂    
≃  

( )5 5
1 1 4 10

2 2

² x Rc² e e²
e e²

² x²τ
∂  − + + − + ∂  
≃  

5 5 5
1 4 10 4

2 2 2

² x Rc² e e e²
e e² ( e )

² x²τ
∂  − − + + + − + ∂  
≃  

3 5
1

2 2

² x Rc² e e²

² x²τ
∂  − − + ∂  
≃  

3 5
1

2 2

² x Rc² e e²

² x²τ
∂  − − + ∂  
≃  
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2

1 3 8 5 8
1

2 2

M G² x R R

² x² x xτ

  ∂  − − +    ∂   

≃  

1 2 20
1 3

M G² x R R

² x² x xτ
 ∂ − − +  ∂  

≃    

This is the same result as above for Riemannian version (20R/x = 12R/x + 7R/x + R/x). 
Therefore, equation (17) can also be retrieved from (25), and this is the most simple and 
straightforward way to calculate it. 
 
And starting from the Minkowskian trajectory: 
 

1
00
12

g² x c²

² xτ
∂∂ = −

∂ ∂
 

( )( )
1

2

2

² x c²
cos( )

² x
α

τ
∂ ∂= −
∂ ∂

 

1

2

1

2
1

2

² x c² e

² x eτ

 
 ∂ ∂ + = −
 ∂ ∂  +  
  

 

( )
2

1

4

1
1 1 2 1

2 2 2
2

1
2

e e
e

² x c² e

² xeτ

   + − + +   ∂ ∂   = −
∂ ∂ + 

 

 

1

4

3
1 1

4 2 2
2

1
2

e² e e²
e

² x c² e

² xeτ

   + + − + +   ∂ ∂   = −
∂ ∂ + 

 

 

1

4

1
2

4
1

2

e
² x c² e

e
² xeτ

 + ∂ ∂ =
∂ ∂ + 

 

 

1

34
1

2

² x c² e e

² xeτ
∂ ∂=
∂ ∂ + 

 

    As expected with (15). 

Now using 
8 1 8

2

e R R

x x x e x²

 ∂ ∂  = = −    ∂ ∂   
 : 

1

3

1 8

4 2
1

2

² x c² e R

² e x²eτ
∂  = − ∂   + 

 

 



         Frédéric LASSIAILLE © 2011                             Page 25                                         09/08/2013 

Frédéric LASSIAILLE  2011 Page 25                                              
 

1

3

1

1
2

² x Rc²

² x² eτ
∂ = −
∂  + 

 

   As expected with (16).  
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6. SCHWARTZCHILD METRIC IN THIS MODEL  
 
Time dilatation between non-inertial and free falling particle trajectories is equal to cos(α), whith α 
being the slope angle of local space line with respect to the inertial reference frame attached to the 
universe. This uses the Riemannian representation of space-time. In this representation the free 
falling particle trajectory is a time line (but not a Riemannian geodesic) and there is also tan(α) = 
v/c. Postulate 3 tells that cos(α) = oper(L1,L2), and therefore it yields the metric in any locally 
uniformly filled space case : g00 = (dτ/dt)² = cos²(α) = oper(L1,L2)². In the specific case of a unique 
attracting object in a universe filled with a constant density of matter, this gives the Swartzchild time 

dilation (1+e)/(1+e/2)² with e being 2 /M x  and M the Schwarzchild ray. Limited development : 
g00 = (1+e)/(1+e/2)² ≅ (1+e) (1-e+(-2)(-3)/2 e²/4 + (-2)(-3)(-4)/6 e3/8 + o(e3)) = (1+e) (1 - e + 3e²/4 
- e3/2 + o(e3)) = 1 - e + 3e²/4 - e3/2 + o(e3) + e – e² + 3e3/4 + o(e3)) =  1 - e + 3/4e² - e3/2 + e –e² + 
3e3/4 + o(e3) =  1 – e²/4 + e3/4 + o(e3) =  1 – 2R/x + 4√2(R/x)(3/2) + o(e3) =  1 – M/x + 
2(M/x)√(M/x) + o(e3). 
 
This must be compared with the result of the calculations from another calculation in the document 
“PioneerExpl.pdf : 
 

00

' '
1 1 2

M M
g

r r

 
− −  

 
≃   and therefore  00

' ' '
1 2

M M M
g

r r r
− +≃  

 

With 0
2

2 '
'

M G
M

c
=  being the Schwarzchild ray, 0M being the attracting mass, and 'G  the 

gravitational constant valid only for long distances approximatively equal to G ). 
 
Therefore the Schwarzchild metric in the context of the gravitational model of the three elements 
theory is the following. 

2

2

'' 11 2
² ² ² ²

'' 1 21

MM
rrds c dt dr
MM
rr

 
+ +

 = −
  ++ 
 

 

(Spherical θ and ϕ variables are not indicated in the right hand term of this equation). 
Of course this is not compatible with General Relativity tensorial curvature equation, since Newton’s 
law is no longer correct now.  
Close to the attracting object, time dilation is equal to dτ/dt = cos(α) = oper(L1,L2) = √(1+e)/(1+e/2) 
≅ √e/(e/2) = 2/√e = 2/√√(8R/x) = √2 √√(x/M), so dτ/dt = √2 √√(x/M) and g00 ≅ 2√(x/M), which is of 
course a singularity but existing only for the mathematical limit x=0. In reality this singularity 
doesn’t exist because it comes only from the unrealistic supposition of a point like massive object. 
Therefore there is no physical singularity, which is more realistic.  
 
Remark 
 

00 2

'
1 2

'
1 ' '

'
1

M
Mrg for r M but only for r M
rM

r

+
    =            −                           

 
+ 

 

≃ ≫ ≫
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