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Gravitational model of the three elements theory: mthematical details calculations

This document is intended to collect each detaibddulations regarding the mathematical basis of
the gravitational model of the three elements theor

1. GEODESIC TIME-LINE EQUATIONS FOR THE MINKOWSKIAN
AND RIEMANNIAN METRICS

The aim of this calculation is to prove that tirmeelgeodesics in the Minkowskian metric are time
line geodesics in the Riemannian metric.

The method is the following.

1) The geodesic equations of the Minkowskian metrgcvanitten.

2) They are simplified using those restrictions.

a) A specific system of inertial reference frames @sdss used. In this system of bases, the
metric matrixes are diagonal. It is the classicarimal map” of General Relativity.

b) It is supposed that only weak space-time deformateaxcurs.

c) Itis supposed that infinitely far away from thedtion of our study, the deformations are
null (like in the case of the Schwarzchild mettiedy).

d) Only time line trajectories are studied. (Whata#led “time line” here is a coordinate
curve in the “exponential map” of the metric, tigta time coordinate curve in the system
of bases in which the metric matrixes are diagoma)'s remind that these are the
trajectories of a free falling particle initially eest when located infinitely far, (and with a
null mass at rest).

3) Steps 1) and 2) are executed with the Riemannidnan€&his metric is constructed by
inversion of the Minkowskian coefficients in itsadional matrixes and of course opposite sign
for the space coefficients. Caution must be appliBdthe system of bases in which those
Riemannian metric matrixes are diagonal might mothie same as the corresponding one in the
Minkowskian metric. 2) Rigorously speaking, it mbstproven that such a Riemannian metric
can be constructed and coherent in such a way, Age remind that a time line in the
Riemannian metric is still a geodesic in this neelrit might not be the trajectory af a free
falling particle.

4) For allowing further comparison, Minkowskian metgeodesic equations (found at the end of
step 2) are written using the Riemaniann metridfaents and the Riemannian local time.

5) Comparison of Minkowskian time line equations (gied at the end of step 4) and Riemannian
time line (yielded at the end of step 3) equatisrdone. The aim result is that they must be the
same in the approximation used context.
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Therefore, more precisely, the aim is proving tirathe Riemannian metric, a time line is
approximately also a time line in the Minkowskiaetnt, and vice versa, in the specific case of the

weak space-time deformations.

The restrictions are the weak space-time deformatoase. This restriction has no incidence since
until now only time line trajectories in the weagfdrmations case has been used in the study of the
gravitational model of the three elements theory.

1) Riemannian metric
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Extradiagonal metric coefficients are nellerywherebecause we can choose such a system of
bases which yield diagonal metric matrixes. Theeetbeir derivatives are null and we get the
following.
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It has been used,, = 0. Of course, it is always possible to find a systérbases in which the

metric matrixes are diagonal. Therefore, the dékeaof those extra-diagonal coefficients is always
null.

It has been used alsix' / a7 =0r / a1 = 0along the considered trajectory.
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This is because only a particular case of trajeesawill be studied. This case is a free falling
particle initially with a null speed and locatedimitively far from the attracting mass, (with alhu
mass).

Therefore, the equations (1) above becomes thewl.

(2)
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And this is the maximum trajectories in the pseudaoiannian Minkowskian metric. They are
known to be free falling particle’s trajectories.

Now replacingg by h andt by T we get the equations of the minimal trajectoiirethe Riemannian
metric:
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Those equations are no longer the free fallingiglals$ trajectories. But the aim of this note is to
prove that they remain a good approximation offtee falling particle’s trajectories in the case of
the weak space-time deformations.

For this to be proven, we start from equations 48}l we substitute thgecoefficients by théa
coefficients, and the variable by tha’ variable.

2) Minkowskian metric

Therefore, let’s start from equations (2) :
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Now let's express those equations with the helftnefRiemanniaih coefficients. We get the
following relationships between the two mefgiandh coefficients.

Ooo =1/ g%
9% =1/ gy g"=1/g, 00=h00
:hOO :_h.ll =1/ hOO

Therefore, the Minkowskian extremal trajectoriesvriollow those two equation rules.
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Finally, we get the following.
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(5)

(6)

Now let’s replace this Minkowskian local timéby the Riemannian local tine We get the

following relationships.

ds=4/ g, dX 2+ g, dx ds'=y/ hodX 2+ b dk *
=\/ 0,,C%dt2+ g, dr? =\/hooczdt2+ h, dr2

dr =/ gy, dt dr' = /h,dt
Or VMt M _ o,
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Therefore, using equations (5), (6), (8), and {{®9,extremal trajectoridgst equation (5) becomes
now the following.
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Let’s notice the last simplification and the sanmalfresult as the first equation of the Riemannian

metric geodesics.
That is to say that the first equation of (2) isigglent to the first equation of (3).

The extremal trajectoriesecond equation(6) becomes now the following.
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Finally, Wlth (10) and (11), we get the followinguations of the Minkowskian metric extremal
trajectories expressed with the help of hiiRiemannian coefficients and thieRiemannian local

time :
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Minkowskian metric extremal trajectories expressedwith Riemannian h coefficients and
Riemannian 1’ local time

3) Comparison

Now it remains to compare those equations (12)) thi¢ equations of the minimal trajectories in the

Riemannian metric, namely equations (3) :
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Riemannian metric extremal trajectories

(13)

The final work consist only of comparing equati¢h®), and equations (13).
The first equation of (12) is exactly the samehasfirst equation of (13).

Therefore, the only work to do is comparing the &giation of (12), and the last equation of (13).

Those last equations are the saméif=1, which is always true in the studied cases.
As a conclusion, the time line geodesics in the Miwskian metric are approximately the time

line geodesics in the Riemannian metric. The use@se for these approximations is the weak
space-time deformations case.
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2. EXISTENCE OF THE SEARCHED RIEMANNIAN METRIC

When constructing the Riemannian metric in thientte correctness of this construction must be
proven.

For example, if we suppose that this Riemanniamimistsuch as its matrixes are diagonal in the
same system of diagonalising bases as the Minkanskie, then this metric is not legal. Indeed,
the calculations above has proven that, if thiddcbe a valid Riemanninan metric, then its time
lines would not be exactly geodesics (but only appnatively). But this approximation is not
enough from a mathematical point of view, becatishauld be exactly geodesics. If this is not the
case, then it means that the constructed metnotia valid one. In other words, it means that,nwhe
a Riemannian metric is searched such as its caafteare inversed with respect to the
Minkowskian diagonalised one (and with opposed sigithe space coefficients), then it generates
non nul extra-diagonal coefficients. That's foresudowever, it is still unclear even with some new
extra-diagonal non null coefficients, that the Hesg Riemannian metric is still a valid one.

For proving the validity of this Riemannian metiiowill be supposed that the existence of this
metric is equivalent to the existence of solutiforats geodesic equations (that is, equivalerth&
validity of the corresponding geodesics).

Therefore, the calculations will be quite straifgrtvard. We just write the geodesics equations
resulting from this supposed Riemannian metric,\@adry to prove the existence of solution for
each initial case.

Those equations are the following.

O°X' __a OX1OX

072 w9t or

It is not possible to simplify immediately this g1, because extra-diagonal coefficients are no
longer null everywhere. But diagonal coefficients known, and only the extra-diagonal
coefficients are unknown.

Therefore, this system isra equations system implying the first derivativesnoh—1) / 2 unknown
variables.

An immediate remark can be done. The ratio oftimber of unknown variables divided by the
number of equations is equalbgn—1)/(2n)= (n—1)/ 2, therefore it increase with the number of
involved dimensionsn. In other words, the studied case of this notackvis the case of a spherical
symmetry in space and which implies omly 2, is probably one of the worst case. Thereforey onl
this case will be studied. That's saying thereany 2 equations, and only dimension 0 and 1 :
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Now let’s take the case of the Schwarzchild metret’s writer the distance from the attracting
mass, as usual.

Each times &™ or a h,; coefficient is a known function efwhen a = 8, and becomes a unknown

variable whena # 3. Here, withn =2, there is only one unknown variable whicthjs = h,,, and
we have :

-1
hyo = (1—%) ,andh, =1—¥.

Also, one way of simplification is as usual to fhe time parameter . Indeed,

Each term lik Gagm, e—9% can be written
X"
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Therefore,‘zg%o has terms of the forrf;l’;-:’_%1 which is unknown.
X X

As a conclusion, the differential system of equagics quite complicated.
The problem is much easier to address from the sifgpsense. This is the method adopted in this
note. The Minkowskian coefficients are first calteld only in a system of bases in which the
matrixes are diagonals. Then the Riemannian didgamdficients are constructed from the
Minkowskian one, but it is still supposed that taédemannian matrixes are diagonals. Therefore,
the calculations are much easier and the restiiaisthe Riemannian time line geodesics are
approximately the Minkowskian ones. But the issith this method is of course that the two
metrics do not share any more the same systemsethahich allows those diagonal matrixes.
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3. EXTREMUM TYPES

The aim is to prove the sign of each extremum. Wistmrove that a Minkowskian metric geodesic
Is amaximum extremum, and that a Riemannian metric geodesioisiimum extremum.

This has been found to be quite heavy to calcurtatiee general case.

Therefore, this will be proven in the specific caééme line trajectories. Indeed, this is enotfigh
the scope of our study, since it is proven in tioge that, a Riemannian time line is approximasely
Minkowskian time line and vice versa, in the cabthe weak space-time deformations.

Let’s write the general equation of an action femg given metric g :

_ Y Y’
A_J-\/goo(a_TJ + gll(aj dr

Let’s modify the trajectory in the following way :

X" o X +rf(7)

Where f(7)is a function of ther parameter, and <>> is a real variable used to modify the

trajectory.
With this modelisation, we get :
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Now the classical method will be used. We forcéo be the space-time distance parameter, such as

g a_xo 2 +g ox 2 =1 And that is the local time parameter as usual
00 Caz_ 11 (ﬁT '

Therefore, the last equation becomes :
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Let’s try to compare the two metric derivativesacfions, by the way :
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To be compared with (above) :
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This is not enough but probably too approximatedt. should also probably need an integration by
part and the using of the value of the derivatingle geodesic trajectory (equal to 0).... To be
worked. Anyhow the best for comparing the firstidatives of the actions is to work with the
geodesic equations as it is done in this note.

Let’s restart from the general equation above :

0A
ar
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This is not only true for a geodesic equation huhe general case, therefore, now we can derivate
once again :

A 1l . : - : :
3 _EJ-(g/I/IV/ZI +49,vV,+29,V+2q, Y y) d After a little calculation.

Now, usingc?dr?= g)o( d)?)2 + gl( d%()z, it should be possible to get the result in theegal case.
But this gives heavy calculations. Let’s calculdiis in a more particular case, the time line case.

1
In this case, we ge%i =0. Under this condition, the last equation becorheddllowing.
T

02A 1. . . . :
_arz :EI(gong + 409V Vot 2 900\30"' 2 Qoo Vo W+ 2 911%‘) d
Now we can use simply :
1 C_ 12 N R ,
Vo = Vo = _E 900 Y00 Vo _Z Y00 (3900_ 2googoo)
\ Yoo

Substituting this into the time line action equatabove, the temporal term vanishes, and it yields
the following equation.

0?A_2 . :

o7 —Ejgn\’fdf (13)
Now, using a Minkowskian metric, the equation is fame as abovg being the Minkowskian
metric coefficient.

The second derivatives of the Minkowskian action is
0’A, _2 .
ar2 —Ej.gnvfdr
Therefore, this second derivative Af is negative (since,, is negative). Therefore the

Minkowskian geodesic is a maximal extremum.
And using a Riemannian metric, equation, the secamivatives of the Riemannian action is :

0’A _2 2 4

or2 _Ej‘hlvf dr
which can be written, using the g coefficient fongarison, andiz' = h,,dr :

2
eh 2 I vAdr
oz ¢

Therefore, this second derivative Af is positive and the Riemannian geodesic is a nahim
extremum.
The final result is the following :

* The Minkowskian geodesic is a maximal extremum.
* The Riemannian geodesic is a minimal extremum.
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4. REWRITING USING THE SPACE-TIME SLOPE

Let’s rewrite equations (12) (Minkowskian time ligeodesic equations) using the space-time slope.
It will be used : h, =0, = cos2@ hy =1/ h,=1/cos2?@

Equations (12) becomes :
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ar' (6 j COS( )ﬁ(cosz(a )j( J

2 act
J (cos@ ) axl(cosz(a j

EANET aa
(arj o0t )aﬁ[cosz(a )j a7 j

0X act
——j ==(cos?(a )’ [ j
ar'\ ot o ox\ cos?(a )

d __E o 10 1
F(ccos(a ) =-= cos2@ T(cosz(a )j( ccost ))
0 (0x 1 ) 1
E[Ecos(a)j 2(cos & ) ax( }( ccost )5

cos?(@ )

ot da\ cos?(a )

ataaa(cos(a)) % 20§£6£ 1 j(co&?)ﬁ
9

d(cos(a ) ax ox) _ c? sda| -2
or o e = eostr) &{(Cos(a yo ))]
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This first equation is trivial.
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Let’s work only the second equation. Theré?a_)f& otherefore:
t

02X . a
~—Z=c2cos (@ )sin

o ~0°c08 @)sine £
2

% =c2cod (@ )tan@ fﬂ
0 X

t2

% =c2coé (@ )tan@ f%(a) (14)

\/ﬁ
five Vx|
S

(postulate 3), withe =
1+-
2

Substitutingcos(a ) by

M, is the attracting mas& the gravitational constant, and c, light speedgete:

tan¥(@)= 4(16i g 2"
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8R
Now substituting withe——x we get
8R / < |[8RIs 1 / _ / RO'S
de_0|V x |_ X 0X_2 X 9 X
ox ox| s
V2R B8ROs 5
S
) x2 X 09X ) /—2Rs+2x&
- - 3
SZ XE 52
And (15) becomes :
#x_c> e Qe
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2
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X Js
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X
“Galactic” case, withs!=1, and x>>R :
0s
02X M.G S+2Xx_— . _ _ . . . .
=M ox with s = 1+f = 1+r/x for instance, which giveswumial:
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o2 . (x+r)3
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Approximation with s=1, and x>>R :

#x_ R [2R]

Rl I O i)

ot2 X X
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Approximation of the

Minkowskian coefficient g,,with s=1, and x>>R :

U = COS (@
2
_| V1+e 1+e
Qoo = 1 e - ez
+— 1+ =
2 ( 2)
-2 2 3
e e (—2)(—3)(ej (—2)(—3)(—4)(ej
=(1+¢)| 1+=| =(1+6| 1- 2=+ | + —
%0 =( )( 2) ( @( 2 2 2 3 2
3e2 ¢
Ooo = (1+ e)(l‘ e”j‘;j
3e2 ¢ 3¢e
=l-e+t—-—+e eF—
oo 4 2 4
e ¢
900:1_2"'2
1( [&RY 1 [&R) M,G
O =1-=|— | +=|— with R=——, andM, being the attracting mass.
4 X 4 X c?
2R 2R |8R
Joo=1-—+—\[—
X X\ X
2R 8R
=1-| 1, 2
-
Joo =1—M(1— MJ with M =2R = ZM;G being the Schwartzchild ray.
X X c
2M.G 2 |2M.,G
e B 18
% czx( cV x ] (18)

As calculated in the “Pioneer anomaly documentbiieerExpl.doc).
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5. EXACT RESULTS

This describes other possible equations relatedetravitational Model of the Three Elements Theodgtimnal
of Modern Physigsvol. 3 No. 5, 2012, pp. 388-397.

_ , dtan(a) tan(a)
F mc I - tanz(a))3/2 (19)

could be replaced by :
F = mc2co$ o()tan(a)% (20)

and

(S+ E ] (or2x) on
EHe

mMG' X (22)

could be replaced by :

But this would have no incidence in the final oVlerasult.
(Of course, now abow is the attracting mass, afdl is the gravitational constant valid infinitely
far from the attracting mass, theref@evalue is very close t@ value in usual cases). Also :

Planet GR value 3elt value
Mercury 42.7848 GR value — 0.0014
Saturn 1.66291 GR value + 0.00056

should be replaced by :

Planet GR value 3elt value
Mercury 42.7848 GR value + 0.0044
Saturn 1.66291 GR value + 0.00061

But this has no incidence on the overall resultolvhs the fact that those differences aren’t strong
enough, taking in mind that the model is not cdr(eclar system is not constaly filled with matter
and therefore anyway those calculations must lexeeuted using a varying matter density).

Relative erratum error :

2y 3
ETI’(thj = cos4(a)(1—tan2(a))2 Equat|on (20) over equatlon (19)

(2" ~(o- ) (-25
(G (=5
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2 -1
Err (Qj =1- B
ot? X

This check that equation (17) is correct, becatiseequation?’X _ _M_12(3£1_3 |2R +@J, available
ot2 X X X
in the document mystmass.pdf, (equation numbel),(bdj to its right factor must be added this
value 'R,
X

The final result can be written

MinkowskianOverMystmassdoc Re IativeErfdr—B = 1—% (23)
X c2x

Now using equations (12), and (13), if we write tigit term of last equation (12) over the right
term of last equation (13), there is also :

MY RY . 8R
MinkowskianOverRiemmannian Re lativeError;, #1(1——) =( ccuszl4 :)(1——] =1-—
r X X
MinkowskianOverRiemmannian Re IativeErtol—S—R = 1—%
X C2X
And finally :
-1 3 . .
Err(%j = cos_4(a’)(1 —tan2(a))2 Last equation (13) over equation (19).
-1 -4 3/2
o) =5 )
ot2 X X
-1
() (o2
t2 X X
-1
Err(aﬁ] =1 +5
t2 X
. . . R M,G
RiemmannianOverMystmassdoc Re lativeEeGr-— =1- (24)

X c2X

Frédéric LASSIAILLEDO 2011 Page 19
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Riemmann 2> 1-R/Ix > Mystmass - 1-7R/x 2> Minkowski.
Version Equation Equation with the slope angle
Minkowski s _ dtan()

. s+2x>2> F = mc2co$ tan(e) ——=
(correct one) __MmM,G ST Xox dx
" [
S+,
X
Old one [S+ 2RI](S+2dej oz e dtan(@) tan(a)
” ” , e ——— d _ > 3/2
mystmass.doc __mMG \ x dx X (1-tan¥@))
X2 ; . . 3/2
sz+s/8R[§+ 8R_2R]
X X X
Riemqnnian Not interesting F o= mecod dytan) dtan()
time-line dx
geodesic
Version Approximation s=1 Approximation x> R'
Minkowski __MmMm,G’ 1 c+2x08
(correct one) X2 [ \/ﬁf F -_ MG’ x
1+ —_— XZ §
X
Old one 2R’ ds
il , SH2X—
"mystmass.doc” | . __mMG' SR F=_MMG dx
X2 aR’ 8R' 2R’ 3/2 X2 2.2+
T+, |7 [1+ R —]
X X X
Riemannian Not interesting Not interesting
time-line
geodesic
Version Limited development
Minkowski 92 x M.G SR 12R'
(correct one) =-—1—|1-3|—+
or? X? X X , ,
R=MG M
Old one |ex MG 2R’ 19R' 2 2
mystmass.doc == 1-3/—+
or? X2 X X
Rlemgnnlan 2x  MG'(, . [2R_ 20R
time-line - e 1-3 —X+ x
geodesic

G’ is the gravitational constant valid infinitely flom the attracting mass, therefd@é value is
very close tds value in usual cases.
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WRITING GEODESIC EQUATIONS WITH MINKOWSKIAN
COEFFICIENTS

That’s the more natural way to calculate. It wileck the above results. Starting from equation (2)

% __1 &(%j

072 27 o\ or
0°x' :1 11 090 a_xo i
orz 2 oxt | or

. 1 . .
Sinceg'' = — = -g,,, last equation can be written :
gll

9 _ 1 agoo(a_xoj2

arz . 290750 (a7

Now it must be wused also, because the trajectory & time line
ox° _odct ot _ dt ¢

E or or goodt_ /goo

2
02x ——1 % c :—ig M. c :_ﬁzagoo
00
‘/goo 2 ox o 2 0X

. Therefore there is :

arz 272 gy

And equations (2) are also finally :

0°x° c? 500y

==, —2 25
arz 2 gOO OXO ( )
0°x" _ 209y,
or2 2 oxt

Which is Minkowskian time line geodesic equations.

Now let’s restart from equations (3):
% _ 1 h%(%]

or'2 2 ox’l\ar
0% _ 1y Oy, (a_j

or'z 2 oxtlar'

There is :

0°x” _ ar 9 ( dr ox’° - g KA g ax° - g agooa_x0+9262x°
ar'2z dr' ar\ar' ar ©ar| " or “ar ar “%or2

Therefore first equation of (3) is also the follogi

30y, X’ . ,02° 1 o 1) aXY
00 a, = — 5=
or 0r Oy /\ OT

Yoo o712 2 gooﬁ
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02X __ 4005, 0% 1 4 16900[& afj

orz ™ 9r ar 2(“]")0950 ox’ | ar' ar

02x° _ _1dgooax°6x°+1 10900(6%’]

a2 ™9 or a7 2 o o2 oxX | ar

X _l%(@j WA _16900(6%’]

a72 © 5x° | ar % gx°
2x’ _ 19_16900 Y

arz 27 | ar

There is :

0°x' _dr 9 (97 9x - g 0 . Ox) _ dgooax 02x1:gza X
ar'2z dr'or\ar' ar ©ar "®ar ©ar 6r 0972 ©ar2

Therefore last equation of (3) is also the follogvin

0°x" :lhll_ahoo a_xo 2
or'z 2 oxtlar'

9202%:11 o ( 1) arax)
®9r2 29, 0%\ g, )\ 07" a7
X _ 1100y X ’
arz 2% g2 ox | ¥ ar

2x _ 1 _Sdgoo(axj

arz . 299790 | 37

Now it must be wused also, because the (trajectory & time Iline

0
0x :E:cﬂ:c dt =_C . Therefore there is :

or 01 o7 oo dt Yoo

2

az_xl:_lg-SM ¢ =_lg-3%ﬁ=_fg-4%
00 00 00

ar2 277 ox | Jg,, 277 0X gy, 277 ax

And equations (3) are also finally :

2x° _ 2 __,00,,

== 26
arz 2 gOO aXO ( )
02X _ ¢ _, 00,

a7z 2 90 5

Which is Riemannian time line geodesic equationgtem using Minkowskian coefficients and
local time for comparison.

Now the comparison is between equations (25) aBpd@d is a little bit easier to understand (with
Minlowskian variables).
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Let’s verify the calculations above with this nesvrfiulation. That's the Riemannian trajectory:

02x' _ _c? g—4 09,
ar2 % axt
92x c2
372 __E( cos(a ) ) ((cos@ )’ )
02 x" _c_ 1+ e
2 2
or 2 1+ej
2
? e\l
1+ -(1+e) 2 ¥+ |
02x' _  c? j ( )2( ijae
= . hid
0712 2 (1+e (1+ej 0x
2
e? 3e, e
l+e+=— |- 1+—+
_62X1:_C_2(1+_ej4( © 4) ( 2 j%
or2 2 2 (1+e) 16) 4
e 5
1+~
92 x" cz( Zj ea_e
or2 4 (1+e) 0X
de 94 [8R _1( 8Rj_
Now using—=—| ,[— |[=—| —— | :
oxX 0X 2e X2
e 5
1+~
e o3 1 on
arz 4 (1+e)4 2el  x2
e 5
1+~
ox_ relS)
ar2 X2 (1+e)4
Limited development:
2 2
ax_ R015e 6)(4)2/4j(1 4e+(4)(5)j
ar2 X2 2 2!
2 2
ﬂ:_RC 1+5_€+Ej(1_4e+ 1082)
0712 X2 2 2
2 2
ox_ _Refy - 4e+10e2+5—e+5—e(—4 )+
0712 X2 2
92 x Rcy, 3e Sej
= 1-=—+==
0r2 X2 2 2
92 x Rc?(, 3e Sej
- e |1 —+ =
0712 X2 2 2
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2
#x__MG[, 3 [8R 5 &R
o0rz X2 2\ x 2 X
#x__MG(, 5 [2R, 20R
o0rz X2 X X

This is the same result as above for Riemanniasiare(20R/x = 12R/x + 7R/x + R/X).
Therefore, equation (17) can also be retrieved ff@5), and this is the most simple and
straightforward way to calculate it.

And starting from the Minkowskian trajectory:

02x" _ €209,

ar2 2 X
92x 026
37z (cos(a)
02 x" _c_i 1+e
or? 2 0X
1
1 = - 1 ==
02x' _ c_ 2) 20e
0712 2 ( ej“ ox
1+
2
e? 3e e?
l+e+— 1+ =—+
92x _ ( ¢ 4}( 2 jae
0712 2 ( ej“ 0x
14—

== — As expected with (15).

de 0 8R | _ 1( SRJ_
Now using—=—| ,[— |[=—| —— | :
ox O0X X 2¢e X2

XZ

2 3
or 4 (1+ej
2
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231 2
02x __Rez 1 As expected with (16).

2 2 3
or X (1+ej
2
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6. SCHWARTZCHILD METRIC IN THIS MODEL

Time dilatation between non-inertial and free fajliparticle trajectories is equal to amg(whith a
being the slope angle of local space line with eesfo the inertial reference frame attached to the
universe. This uses the Riemannian representatispaze-time. In this representation the free
falling particle trajectory is a time line (but r@Riemannian geodesic) and there is alsaxjen(

v/c. Postulate 3 tells that cog(= oper(L1,L2), and therefore it yields the metnany locally
uniformly filled space case : g00 =t(dt)2 = cos3¢) = oper(L1,L2)2. In the specific case of a unique
attracting object in a universe filled with a cargtdensity of matter, this gives the Swartzchituet

dilation (1+e)/(1+e/2)2 with e beingyM /x and M the Schwarzchild ray. Limited development :
g00 = (1+e)/(1+e/2)B (1+e) (1-e+(-2)(-3)/2 e?/4 + (-2)(-3)(-4)/6 e3/®(e3)) = (1+e) (1 - e + 3e?/4
-e3/2+0(e3)) =1-e +3e?4-e3/2 +0(e3)+a2 + 3e3/4 + 0(e3)) = 1-e + 3/4e2- e3/2 €%+
3e3/4 +0(e3) = 1—e?4 +e3/4 +0(e3) = 1 x2RMN2(R/x)(3/2) + o(e3) = 1 — M/x +
2(M/X)V(M/x) + o(e3).

This must be compared with the result of the caliwohs from another calculation in the document
“PioneerExpl.pdf :

o = 1_M_(1_ M_J and therefore Joo = 1—MT + ZMT I\r/l_
r r

2M,G'

C2

With M '=

being the Schwarzchild ray, being the attracting mass, a@d the
gravitational constant valid only for long distas@pproximatively equal t& ).

Therefore the Schwarzchild metric in the contexthef gravitational model of the three elements

theory is the following.
2
1 M !
1+ M [1"'\/ . ]
de=—Y T _@de-~ 2 dp

2 1
[1+ \/'\Tj 142,
r r
(Sphericalb and¢ variables are not indicated in the right hand tefrthis equation).
Of course this is not compatible with General Reityttensorial curvature equation, since Newton’s
law is no longer correct now.
Close to the attracting object, time dilation isi@lto d/dt = cos€) = oper(L1,L2) =V/(1+e)/(1+e/2)
OvVel(el2) = 2/e = 2WV(8R/x) =V2 VV(x/M), so d/dt =v2 VV(x/M) and g00 2V(x/M), which is of
course a singularity but existing only for the neattatical limit x=0. In reality this singularity

doesn't exist because it comes only from the urg@bkupposition of a point like massive object.
Therefore there is no physical singularity, whishriore realistic.

Remark

1+ M

Qoo ~ — .- for r>M 'but only forr> M"

)2 r
1+|\/|
r
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