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Gravitational model of the three elements theory: ¥planation of the Pioneer anomaly

The study of this article suggests an explanatoridday gravitational mysteries. This explanation
Is based on a modification of Newton’s law. Thisdifigation is conducted from an Euclidean
vision of relativity. This modification is thoroutghexplained in [12].

The following issues are addressed: Pioneer anoaftdy and before the location of Saturn, Earth
flyby anomalies, a predicted Saturn flyby anomdlPimneerll probe trajectory, the “missing
asteroids” mystery in solar system, the advangea@cession of the perihelion of Mercury and
Saturn, PPN formalism, Tully-Ficher relation, salegravity and the disparity of the measurements
of the gravitational constant.

1. INTRODUCTION

The aim of this article is to study some gravitatibmysteries with the help of the gravitational
model of the three elements theory. This gravitetianodel is described in [12].
The first analysed mystery is the Pioneer anontady.this mystery, an explanation is given which

yields the theoretical value dt25 10™° m/s” in place of the measured val8g4 10°m/ <, as

the added acceleration value toward the sun. Bsitbdification doesn’t give the exact curve for
the measured anomaly. In order to retrieve thetexawe, the “second modification of Newton’s
law” (explained in [12]), must be used. The secomatlification comes from the presence of the
Kuiper belt. Its mass, when taken into accounidgi¢he exact measured curve of the Pioneer
anomaly.

Here is the set of mysteries which are addresselibarticle:

The Pioneer anomaly (Saturn and beyond).

The Pioneer anomaly before Saturn.

Earth flyby anomalies.

The Saturn flyby by Pioneer 11.

The Perihelion advance or precession of Mercury&atdrn.
Sideral gravity.

The disparity of the gravitational constant measumets.
PPN formalism.

Tully-Ficher relation.

Solving the sign issue for the galaxies speed lpsofi

O 0000000 O0O0o

The reader is strongly invited to read [12] befi@ading this document. Otherwise, the next chapter
will remind shortly the content of [12]. The corestscious reader is advised to read at first chapter
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<<12. GENERAL RELATIVITY EQUATIONS>>. This chaptevill give a mathematical
understanding of what is the “first correction afWon’s law”, and the “second correction of
Newton’s law”, terms which are oftenly used in tdEcument.

There exists also a short version of this docurf@mtument [14], 5 pages). Chapters 2 and 3 are
studying the Pioneer anomaly. The following chap{ehapters 5, 6, 7, and 8) are studying the
space-time deformation contributions and their maideropagation. They can be skiped for a first
lecture. The other mysteries are studied startiowgp fchapter 9.
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2. THE GRAVITATIONAL MODEL (REMINDER)

This model is thoroughly explained in [12]. Letisnsmarize it. It is based on the inner mechanisms
of restricted and general relativity. Each of tleedntz transformation details, space-time
deformation by energy, following geodesics, andsk&im equivalence principles has been used in
order to construct this gravitational model.

Moreover, the attempt is to explain Lorentz transfations with the help of those general relativity
principles. During this attempt, some inconsistescare found. The resolution of these errors lead t
stating that matter is composed of indivisible jgées, called “luminous points”. Those “points” are
always travelling in space at the speed of lighteygenerates around them a radical space-time
deformation. These deformations are propagatdueatpeed of light in every space directions, and
are combined together with the help of a non-assiwei and non-linear operator, called the
“relativistic operator”. This operator is only afga once, at any point of space and at any time.
Therefore, the shape of space-time at any spaeegoimt is determined by the propagated space-
time deformations coming from the luminous poimtshie universe, along the relativistic cone
centered on this point. Therefore, local gravitatew depends strongly on energy distribution
among the universe.

By construction, this mechanism retrieves Lorerdngformation details. But moreover, it allows to
retrieve Newton’s law for long distances and faoastant and homogeneous distribution of energy
in the universe. The key point is that this Newsoiaw is only retrieved for long distances, and for
this special energy distribution. For short anéiimtediate distances, Newton’s law is no longer
retrieved. That's what is called “first modificati@f Newton’s law”. And for a non constant
distribution of energy, Newton’s law is even morediiied. This one is called the “second
modification of Newton’s law”.

Let’s remind that the Sagnac effect is a directseguence of what is called “Postulate 1”. This
postulate is the first step in the constructiothig model. The consequence of this postulate is a
direct and immediate explanation of the Sagnaceffe Wang, Y.Zheng, A.Yao, D.Langley,
“Modified Sagnac experiment for measuring travelididifference between counter-propagating
light beams in a uniformly moving fiber”, Physicstiers A 312 (2003) 7-10. DOI:10.1016/S0375-
9601(03)00575-9.
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3.

USING THE FIRST MODIFICATION OF NEWTON'S LAW

The “first modification of Newton’s law” which isa$cribed in [12] uses a fitting of Newton’s law
for long distances.

In fact, this fitting must not be done for longtdisces. It must be done for a distance from the sun

where the heliocentric gravitational constant iswn to be perfect. This value is around the sun to

Saturn distance. This can be seen on the measuineel @f the Pioneer anomaly. The figure 1 below
shows this curve, which is extracted from [1].

Acceleration (107" m/s?)

10

o
T

—&— Pioneer 10
—8— Pioneer 11

0 5 10 15 20 25 30 35 40 45 50

Figure 1: Measured curve of the Pioneer anomalis fiture has been extracted
from [1]. X-coordinate is irAU.

On this figure, we can see that the anomaly almasipletely vanishes around 10 Astronomical
Unit from the sun. This value is the distance au@afrom the sunxX, =9.55AU).
Therefore, it is for this exact distangg from the sun that the correction of Newton'’s |aag mo

effects.
Hence, the following calculations consists simplyiating that the corrected Newton'’s law is equal

to Newton’s law for thisx, distance.

a [ _G'M (1—3/2—?] 0 - GM (1)
X2 XS X2

ais the real acceleration toward the san:.F—

m

mis the mass of the Pioneer probe.
M is the mass of the sun.
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F is the sun attracting force.

G is the gravitational constant (therefore, instue $olar system).

G’ is the gravitational constant value outside ofgblkar system, valid for long distances.
R’ is equal to <<G’M/cz>>.

X, is the sun to Saturn distance. We will uge:= 1429 10° m[J 9.55 AU.

The approximated equation (1) has been calculatgt?]. Now the heliocentric gravitational
constant,G, , will be used, and its “outside of solar systerlugg G,': G, =GMandG,'=G'M.

Hence we geR'= G' M/ &= G,/ ¢and:

a [ —%(1—% 2(2“'} i —% (2)

Let us writely =/G, " . Then (2) becomes:

312 53
E\/gy y2+GhDO 3)

This equation is resolved in appendix 1. It yighis value ofy, thenG, . This G, ' value is close to
G, value. The next step is to calculate an approxenatalue for the Pioneer anomalya. We
have simply:

pa 0 S1-32%0) L&
X 2 c\ x X2

Now for each possible value of x. It has been emitthat this anomaly is equal to the approximated
value of the corrected Newton’s law, minus thesilzd Newton’s law. After a little calculation, ¢hi
yields:

B
Jx (@)

G
c
be calculated in the following way.

With A=G,'-G, andB=3 2G, '. The curve ofAa has a “bell shape”. Its maximuka,_ can

7
@ = (%S—ZA&sz = 0 After calculation. Hence:
X
5B 25B2
—-2AJx = 0 and =
2 \/_ X 16A2

X is thex-coordinate of the maximum. The maximumafis thema, . :(A—%J/ X2

Frédéric LASSIAILLEO 2011 Page 5



Frédéric LASSIAILLEe 2011 Page 6 18/11/2013

Numerical application:
G, = 0.13271243 18m & :

G,'= 0.13273052 18m &
A= 0.1810 16 m* /& (G, is calculated in appendix 1).

7

B= 0.2163 168m? /&
x = 0.2229 16'm

and finally

ha. = 725 10"m/¢ (5)

which is very close to the Pioneer anomaly val&74 10™°m/s’.
This is 17% of precision.

This theoretical value is very close to the measuleone, and it has been calculated without any
fitting.

Now let’s plot the whole curve.
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Figure 2: First theoretical curve of the Pioneasranly. X-coordinate is irAU, and
y-coordinate is iim/s2

This curve has been plotted with the MAPLE prograrappendix 2.

The curve is very good forcoordinate between 10 and 20, which are roughly the distances of
the locations between Saturn and Uranus. But @peater than 28U, Uranus location, the curve is
decreasing too much, as compared with the measured (Figure 1).

That's because we didn’t took into account thetexise of the Kuiper’s belt. This is a belt of
asteroids which are located beyond Neptune, oechgtic plan.
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But as it has been shown in [12], chapter “Staedpaystery”, the presence of such a varying mass
distribution has an important impact on the coroecbf Newton’s law.

Hence, it is important to take into account the srdistribution of the Kuiper’s belt in the

calculation on the correction of Newton’s law. Thi#l be done in the next chapter.
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4.  TAKING INTO ACCOUNT THE KUIPER’S BELT

The next chapter will explain why the Kuiper’s beltist be taken into account as symmetric
contributions in the calculation of the relativtstiperator, and why the planets of the solar system
must not.

But let's see immediately the consequences ofstlaiement.

The first step is approximating that the effectra Kuiper’s belt is mainly coming from the additio
of symmetric contributions to the relativistic ogtar. This approximation is explained in appendix
4,

The second step is to modeling simulate the spatedeformation symmetric contributions coming
from the Kuiper’s belt, in order to see if thisrretes the measured curve of the Pioneer anomaly.

The following modeling ofL, , the Kuiper’s belt symmetric contribution, will lnsed.
In fact onlyL, /(Lu + Lg) is needed, sincg, +L,, the galactic and extra-galactic contributions
value, will be simplified in the calculation of tihelativistic operator.

Warning : from now on, in this Kuiper study, welwite L in place é L, +L . A next version of
this document will correct this. But this falseatain doesn’t change the final result. Therefore,
L, /(Lu + Lg) will be written L, onlL, .

2 XKuiper

LonL, = Lon Lgmaxz_zr arctar{——J (5)

T X

L.onL, is the value of thg, / L quotient.
L.onL,,., is the value of, onL,when located on the sun, which is the maximal jpbssialue. The
following value will be used:

L.onL,,., =0.001E (57)
Xcuiper 1S NOt the maximum distance of the Kuiper’s beltite sun (48 AU), buk, ... =114 AU .

Of course onL ., andx,,.. values has been fitted in order to retrieve thé pessible curve.

Kuiper
Let us see what is the curvelgénL,.
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Figure 3: Modeling of the symmetric contributiomtiang from the Kuiper’'s belt.

The MAPLE program having plotted this curve is théowing one.

AU :=1.4959787 * 10**11.

xKuiper := 114*AU:

Lk_on_Lg_max := 0.0015:

Lk_on_Lg :=Lk on_Lg max * invfunc[tan](( 2/Pi) *kauiper / x) / (Pi/2):
X :=AU*y:

plot(Lk_on_Lg, y=1..1000 );

We can check that the valuelgbnLis equal td,onL, ., for x=0, and that,onL,is decreasing.

Now let us see immediately the theoretical curvatie Pioneer anomaly, when inserting this space-
time deformation symmetric contribution in the cdddion of the relativistic operator.
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Figure 4: Second theoretical curve of the Pioneermaly, taking into account the
Kuiper's belt with a modeling of its symmetric cahtitions on the relativistic operatok-
coordinate is irAU, andy-coordinate is inm/s2.

Now this theoretical curve is perfect. It is petfeditting the measured curve of the figure 1.
Noticeably, the maximum value &7 10"°m/ <. It is very close to the measured value of

8.74 10°m/ s*(0,5% of precision). But, at the same time, thepshaf the curve is exactly the

same.
The MAPLE program which plotted this curve is i tppendix 3. In this program, theonL,

value of equation (5’) has been used in such a way.

L' =1+Lonl +(1+ LkoonLg)\/g

L, =1+L.0nL,
cos@ ) = oper(L 'L, ) This is the relativistic operator.

a is the slope angle of the local space line.
L,onL,is the value ofL, onL, for x=x, the location of Saturn.

The equations df, 'andL," above have been obtained by dividing pthe following equations:

L, = |_g+|_k+(|_g+|_k0)\/§
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L, = L, +L,

Of course, we have,'=L, /L, andL,’=L,/L,. Those last values are calculated in the following
way.

+ The symmetric contribution is equaltg = L +L,.

» The asymmetric contribution is equal(tbg + Lko) {ﬁ :
X

Indeed, the symmetric contribution, locally to Satus equal toL, +L,,, and only théocal

symmetric contribution must be taken into accounémvcalculating the relativistic operator. This
has been showed in [12], in the study of the seconctction of Newton’s law. It is for this locatio
of Saturn, and because= MG/ &, that the gravitational force is equal to the N&vis equation
value, using th& constant.

Of course, the,onL . andx, . parameters has been fitted in order to obtaingitect curve.

Now we have to show that thigonL, contribution modeling is very close to the real .one

For this, we must first understand why the Kuipé&edt must be taken into account in the calculation
of the relativistic operator. This will be donetire next chapter.
After that, we will actually calculates the reahsyetrical contribution coming from the Kuiper’'s

belt. This will be followed by the calculationstbieL, / L quotient.

At the end, we will try to analyse the slight difaces between this real contribution and the
modeled one above, for the Kuiper’s belt.
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5.  WHICH OPERATORS BETWEEN THE CONTRIBUTIONS

This chapter will try to explain why the Kuiper'glbspace-time deformations must be taken into
account in the calculation of the relativistic ogter.

A first important remark must be done at first, atihe first modification of Newton'’s law, which
has been used in chapter 2. In this correctiorasgeme that the distribution of matter inside the
solar system is very simple: there is the sun,thadvhole space outside of the sun is filled with a
constant and homogeneous distribution of matter.

Of course, this is not true. This matter densityas constant. A better approximation consists in
supposing that this matter density is only depemdithe distance from the sun. This better
modelling leads to what was called the “secondemtion of Newton’s law in [12]. In this
document, the studied case was the case of theygalat the case of the solar system. But the
physical mechanism is exactly the same.

In the solar system, there are many objects. &irall, there are the planets. We will see beloat th
the planets mustot be taken into account as symmetric contributionthe calculation of the
relativistic operator. There are also, the Kuip&e#t, and even some more objects which are located
beyond the Kuiper’s belt: the scattered disk, Eis, ..

Now let's analyse the case of the planets in ther system.
The planets of the solar system are not takenaotount as symmetric contributions in the
calculation of the relativistic operator. That'shase they are almost never aligned.

For example, if Saturn, Neptune, and the Pioneprahe are aligned on the same straight line, then
the space-time deformations propagated from thesetanets must be taken into account as
symmetric contributions when calculating the reiatic operator. This yields a final attractingder
which is different from the sum of the two classioarresponding Newton’s forces.

This case is nothing more than the case of anseclifst this time, the total gravitational force is
difficult to measure, because this would be donenkegsuring the Pioneerll’s trajectory, but this is
not possible because of the extremely short instbine of this eclipse.

But, on the contrary, if the two planets are nggradd with Pioneerll on the same straight linej the
we must calculate 2 values for the relativisticrapar. We must calculate, one relativistic operator
value for the Saturn to Pioneerl1 straight ling, another one for the Neptune to Pioneerl1 line.
Those 2 values yields 2 different gravitationatcts, in the respective directions of those planets.
Thereafter, those two force vectors are summedheg#o form the total gravitational force vector
resulting from the attractions of those planetssTast case is far enough the most frequent d¢ase.
Is calculated with the classical additional ruldate vectors.

On the contrary, with the Kuiper’s belt, it is quitsual that a Kuiper’s belt asteroid is just an th

line between Pioneer probe and the sun. Theretfoea<uiper’s belt must be taken into account as
symmetric contributions in the calculation of tiedativistic operator.
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6. CALCULATION OF G

Before studying the attenuation rule and the cateuh of the symmetrical contributions (following
chapters), the calculation & must be reminded.

The equation of th& gravitational constant has been calculated in,[d@pendix 4. Let’s calculate
it in a slightly different way. The equation of tasymmetric contributiorh. ,coming from a

luminous point can be written:

8R G G m G
L, =L, —2 = 2&5,/”‘; = 2\/_2%,/1 Wwith R, =——, ande, = m, ¢ being the energy of a
X cV x X c

luminous pointNow the symmetric contributidy, is a combination ot contributions along some
fixed width solid angle:

L, = Z Lp This sum is to be done along a fixed widthdalngle.
P

The width of this solid angle is still to be detémated. Now combining the two equations above, we
get:

Ly [BR
Lu - Lu; X

It results the value d& as a function of the, contributions calculated along this fixed widthidol
angle.

8R G
PN EA Y 22_@ %2, and finally
p X X

p C

4
G= C—2
3 88,
~\ X
This is the same result as the one calculatedperagix 4 of [12].

8e : : o . .
Now the sumz , /—p located on the denominator of this equatioia$ answering the following
X
p

questions.

1) what is the width of this solid angle ?

2) If this width is not small, for example, if it igj@al to at, in which case the solid angle is
covering the half celestial sphere, an issue oéafrce arises. It must be ensured that it can be
calculated the attracting forces along each spaeetn, giving the same result. What is this
exact formula ?
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3) This sum must converge. Hence the maximum distéhedength of the cone) is finite. What is
this length ?

4) If this distance, the width of this solid angledahe “width of the luminous point” (width on
which the luminous point deforms space-time ansl deformation is propagating to us) leads to
the possibility to encounter only partially a lurous point with this solid angle, then the only
way to be coherent with the vectorial linearitygoévitational forces, is to postulates that the
contributions are combined together with a squaoé of the sum of the squares law (equation
(8))-

5) But if this is not the case, then the same questitses again because it must be unsured that two
luminous points, closed to each other, giving s&year space-time deformations, will gives a
final global force which is the same, either cadtet! with only one relativistic operator
calculated for the two contributions, leading tdyamne force, or calculated with two relativistic
operator, one for each luminous point, and theeeatilculating the global force vector as being
the sum of the two vectorial forces.

The only way to answer to question 4) and 5) isg® equation (8) for the the combinations of the
asymmetric contributions. This equation (8) musépplied in order to get the final asymmetric
contribution which is used later on in the caldelatof the relativistic operator.

In this way, it is easy to answer to questionsnt) 2), postulating simply that this width is “sniall
Here “small” means that there is no need to calewday incidence angle or whatever could be
needed if this width wasn’t small enough. Of coulse is a practical postulate. But it appearsiric
to solve the question 2). Moreover, even if theigoh to question 2) could be done, it would be
probably a complicated rule (in order to get ridk# non linearity of the relativistic operator).
Hence it would be surprising that Newton’s law &nigy could be explained by a complicated rule.
This is for the moment enough for answering thagestjons 1) 2) 4) and 5).

As a consequence of this, now using equation (8)doe of a simple addition of the contributions
like above, we get a different equation €ar

C4

8.

G=
e

P
X

Let’s remark that this equation (8) will also bgwed later on with the conservation of the space-
time vacuum conservation principle.

For answering question 3), the present documenegrthe existence of a maximungy,, value
inside the galaxy, which results from an occultatimechanism inside the galaxy. It could exist the
same mechanism outside the galaxy, for extra-galeshtributions. It could exists am, value,
which represents the distance beyond which angadaatic luminous point contribution cannot be
noticed. (Let’'s remind that “contribution” meangpé&se-time deformation propagation
contribution”). Let's remark that the answer to sti@n 3) can be given also, differently, simply
stating that the universe age is finite.

Anyhow, a way to evaluate,,, will be to compare the equations of the model witperimental

data coming from sideral gravity and the dispanitthe measurements Gt
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7. ATTENUATION RULE FOR THE SPACE-TIME DEFORMATIONS

This is explained in [15]. Let’s remind it shortly.

The values which are operating in the relativieperator are namedandL, in [15].
They represents the height, along time axis, obfflaee-time vacuum which is propagated with the
space-time deformation. In fagtandL, are the resulting values for the final height ofwam, after

taking into account every space-time propagatedwacrom the corresponding luminous points.
Those luminous points are located on the relaitvigine centered on the point where we want to

calculate the relativistic operator. Those propagatare coming from the left farvalue,

(luminous points located on the left) and from ttighat forL, value (luminous points located on the
right).
Now in this document, those height of vacuum valudisdoe named simply “space-time

deformations”, “space-time deformation values”,dsg-time contributions”, or simply
“contributions”.

The space-time deformations are propagating inespatt a/+r rule. ¢ is the distance from the
emitting point in space and the point in space wlvegg want to calculate the relativistic operator).
That'’s for 2 reasons:

o this rule is retrieving roughly Newton’s law fomg distances,

o itis justified from a purely theoretical point akw.

This last reason is a geometrical argument. Therétieal assumption which justifies tHig/r

rule is the conservation of vacuum during space-titeformation. This vacuum is the well known
vacuum created in space-time by a Lorentz transftiris quantified by the position of the O’ point
along the time axis in a Lorentz transform. Thigipbas been detailed in [12]. This vacuum is also
the key concept which allows relativity to explénme asymmetry of the twin roles in the twin
paradox.

As it is described in [15], because of this assumnpthe calculation is now the following one.
Let’s remind it. We have to study a luminous point
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Figure 5: Location in space, of the propagated esphimoe deformation, generated by a straight line
luminous point trajectory.

We study a luminous point, whom trajectory is theais. The luminous point is travelling along
the Ox axis, x increasing.
Let's note, att =t,, the time at which the luminous point is locat@d@x axis onx, coordinate. At

t =t, +dt, the luminous point is located)gt+ dxon Ox axis.

Let’'s analyse the propagation, in space, of theesiane deformation generated by this luminous
point trajectory segmentxf, x, + dx].
This space-time deformation generated betwgeandt, +dt instants along Ox axis, is propagating

with the ¢ speed in space. This propagation is done in thezgyéh, which is parallel to the Ox
trajectory of the luminous point.

Thereatfter, at >t,, this deformation has been propagated along keaiith a ray equal to
r=c (t-t,). This circle is located on the plan which is piafab the OyOz plan, and which
intersect the Ox axis gjcoordinate.

Now let’s notec dt the height of the vacuum which has been propagstéte t instant. (With any

space-time deformation propagation, there is &sgtopagation of a space-time vacuum. This is
described in [15]).

Let’s notedr the length of this vacuum along each circle ray.

This space-time vacuum is located along the cienlé, has a thickness equaldalt = dr along each

ray of this circle. This is also a direct applicatiof the postulate 7: the vacuum generated by a
luminous point always gets an isosceles triangiépsh

The space-time propagated vacuum volume is prapatito c dt dr dl L (L= 27r).
That’s because this is the volume of a 4D torush) wicubic section:

0 cdt is the height of this torus along time axis.

o0 dr is the length of the torus along each ray of indecabove.
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o di=+2dxisthe length of the torus along the envelopéefdpace-time propagations
coming from the luminous point trajectory (the cari¢he preceding figure).

Hence we get :

dv = kcdtdrdlL k, is a constant. Hence we get, since dr = cdt:
dv = k(cd)’v2 demrr (5™
dv = K'(cd) r k’ is a constant.

dV stays constant during the propagation (postulase& [15]). Let’s calbV, this constant value.
We get:

cdt = ‘/_dVO
k'r
kll -
/— k" is a constant.
r

The 1Ar law is retrieved.

c dt

Remark : in fact, the propagation schema is moraglacated than the one depicted by Figure 5.
The envelope of the circles is a not a regularddeformed cone because the fundamental
trajectory of the luminous point is not a straidine but a circle. The center of this circle is the
gravity center of the attracting mass which habecstudied. The result of this modification is that

me 2 d tan@) tang )
dx (1-tan2@r)
mMG me2 d tan@) tang )
X dx (1-tan2gr)
constant. Indeed, with the Figure 5 description, @heircle encounter fewer and fewer space points
as its ray is increasing. In other words, theregscomplete space diffusion of the propagation as

time goes by. Hence the Newton’s law 1/x2 mustuigiied by k x before identification with the
model.

Therefore there is an issue when trying to explhiés 144 law with the space-time vacuum
conservation. Indeed, now we hadle= /2 x dx (a being a constant angle value) in place of

dl =+/2 dx. It has to be postulated or explained why this difin along the Ox axis doesn’t
decrease the c dt contribution value when propaggtihis work is in progress.

the Newton law must be identified directrlyr%3 5 -
X

Otherwise the identification should b

k being a

3/2
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8. CALCULATION OF THE SYMMETRICAL CONTRIBUTIONS

This issue is a general one. It is one of the gse&esues of the model. In the dark matter
explanation, this issue has been discarded bydareat calculation. But here with Pioneer anomaly
problem, we cannot avoid the real calculation aftdbutions.

The aim is to find the operator which combines twace-time deformation propagated
contributions, before applying this result to te&tivistic operator. In other words, the quesi®to

2—@. Of course,L andL, are

L +L,

each of them resulting of many luminous point cbutions. The question is how to combine those
combinations, in order to get andL, . It will be studied only the addition, and the tisge root of

the sum of the squares” operator:

L= > Loand,= > L, or L=/ > LandL,=| > L2
p onthe left p onthe right p onthe left p onthe right

The same question is arising for the evaluationtutivpart is dedicated fdr, andL, before
calculating the relativistic operator:

I‘1 = L2 + Lasym’ or Ll = \/ I‘22 + Lisym ' 9

A first remark is that the additive operator doésetrieve the additivity of the gravitational fesc
(A crossed term is added....). In order to retridvedddition of gravitational vector forces the
“square root of the sum of the squares” operatastrne used for combining the contributions.
Indeed, let’s take the simple case of two paraftavitational forces, coming from two distinct

attractive objects, whom masses Meand M, , and let's writeR = M, G/ &,R, = M, G/ &.

find how are calculateld andL,, before calculatingpper( L, LZ) =

The relativistic term(l—tan 2t )_3/2Wi|| be neglected for each gravitational force

2
F o= mC2d tan@) tang ) 0 me 2 ta( 3 tarr(r ) _ mc de
dx (1_tan 2@' ) dX

L

asym

L

sym

e being the ratio of asymmetric over symmetric citwiion as usual:e =

Using the postulated operator we gst./ € + & . Hence:

F:mcz\/i\/i

With, as usual: = SR and e = SR,
% =X x=x|
This yields immediately:
mc R mé R

F = _— + £
(=x)" (%= %)
Withe being 1 or -1 depending of the location (respedtyivight or left) of the second object,
supposing the first object located on the righhalfy:
F = R +F,
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Which is the addition of the gravitational forces.

In the chapter studying the measurements,dhe analysis of sideral gravity tends to show tha
operator combining a star contribution and the>gaknd-extragalactic contribution, is an addition.
Otherwise, using the “square root of the sum ofstipeares” law, the experimental sideral gravity
ratio of 0.054% is not retrieved. (In this sidegedvity analysis, it is supposed that extragalactic
contribution is equal (or same order) to galaxytabation. This is a result from the study of the
velocities of the galaxies inside their groups).

This addition of the contributions predicts a vima of gravitational forces additivity at galaxy
scales. It gives the idea of an experimentatiorchacking this violation at earth scale (refer to
appendix 16). This is a crucial information sineehis present document, the addition is always
used for combination of contributions. For moreomfiation please refer to appendix 17.

Therefore, the next step is to check wether othist“square root of the sum of the squares” law
might be explained by the gravitational model & three elements theory. Of course the used
principle will be the conservation of space-timewam.

Before entering into the real issue, we must undedshow the space-time deformations are
propagated and combined between themselves.

Once again, the “conservation of space-time vacuommtiple is dictating the combination of those
contributions.

Let’s take the example of two luminous points. Wanimo calculate the intensity of the resulting
space-time deformation generated by those pointsoore location in space.

As described in [12], the intensity of the spaceetipropagated deformation is in fact the height of
space-time vacuum which is propagated with theestiate deformation. All we have to do is
quantifying this height of vacuum, assuming thewiblume stays constant.

We have, on some M point in space:

av,
av,

22 ki dx (¢ df)’ for the first luminous point,

22 ki, dx, ( cdt)’ for the second luminous point.

This is equation (5™”), applied for each luminopasint. The lengths of the trajectory segments are
supposed equal @x for the two casesdx = dx + dx ). Indeed, we considerer only one time

interval on M point for calculating the relativistoperator.
The space-time vacuum conservation law is dictatiegcalculation rule. Hence, we have, on some
M point in space:
dv. = d\+d\y Total space-time vacuum.
2m/2kr dx (cdt)® + 222 ki dx( cdy)’

Let's now assume that the two luminous point tri@ees are close together and parallel, and that
the M point is quite far away from those trajeatsri
Hence we have: [/rl [/r2, and:

dv 0 2m2krdd(cd) +(cap)’] 6)
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Now, since the two trajectories are close to edbbrand parallel, we have also:
dv = 22 krdx(cd) (7)

Wherer =r, =r,, andc dt is the resulting height of the resulting space-tprepagation on M point.
Combining (6) and (7), we get:

oml2krdx(cd)’ = 2m/2 krd>{( cdf)” +( Ccit)z}

cdt = (cdi)+(cdt)’ (8)

Now we would have to generalize this calculationwbwithout assuming that the luminous point
trajectories are parallel, and the M point far anByt this will not be done.

This general rule will be used for now on, for cééting the final space-time height of vacuum
generated by two luminous points.

Now, we are ready for the calculation of the cdnttions of many luminous points.
We have to estimate the following values.

* L., the space-time deformation contribution comiragfrthe Kuiper’'s belt. More
precisely, it is the part or the symmetric conttibns coming on the M point. The M point
is the location in space where we want to calculaeelativistic operator (the location of
the Pioneer probe).

* L,, the space-time deformation contribution comirggrfithe galaxy (outside of the solar
system).

Let’s take the example of a sphere filled with astant homogeneous repartition of matter.

It must be assumed, as usual, that the universatismpty (...). Otherwise, the relativistic operator
vanishes and the physical result is stupid: 772. That is the physical principle of the three elame
theory: the space-time shape at any point is alwlaated by the whole universe repartition of
matter. The usual linear macroscopic aspect ofespae is due to the isotropy and the homogeneity
of the farthest region of the universe.

Therefore, we will assume that, out of the sphiére space is filled with a uniform repartition of
matter.

p is the matter density inside the sphere.

Ris the ray of the sphere.
O point is the middle of the sphere.

We want to calculatk, the space-time resulting deformation height gmoixt. Only the space-time
deformations coming from the sphere are calculatéd The contributions coming from out of the
sphere are not taken into account. We have:

L2 = Z { %J 9)

p xp

Frédéric LASSIAILLEDO 2011 Page 20



Frédéric LASSIAILLEs 2011 Page 21 18/11/2013

We have applied the equation (8) rule: the squhtieedfinal contribution is equal to the sum of the
squares of the initial contributions.

8R
2 = —>
%

where the sum is done along a small solid angia fitte O point and for each p luminous point in
this solid angle.

X, is the distance of the generic luminous point ftbe O point,R, = m G/ &, with m =e / &
ande, is the luminous point energy.

8R
> = >n—2 9)
Xp XD

n, is the number of luminous points which are locatethe solid angle, at the, distance from the

O point. We have applied the equation (8) rules thimbem, is located inside the square root of
the (9) equation, not outside. Let’s calculatevakeie of n . We have:

2
n, = % L is the width of thex solid angle cone at location.
a’x?
= dz” Because: //tan(x) = L/Xp (o is small). (97

Hence, equation (9’) becomes:

a’x’> 8M G
L2 = Z d2p Czp
Xp )%
8a’ G
> = dzcg Xpr (10)

By other mathematical classical means, we have :

R
dx, O %dex
0

RZ
2d

This approximation is accurate here.

Hence, (10) becomes:

L = 20'— “S,epﬁ (10’)
c?d?

Frédéric LASSIAILLED 2011 Page 21



Frédéric LASSIAILLE 2011 Page 22 18/11/2013
Now will be used alsop=m, / d®, wherepis the matter density inside the sphere. Hence:

d= {%}3 (10”)
c?p

Putting (10”) inside (10’), we get:

L = 2a%/@p (11)

Now we can apply this equation to each casgsand L, values. In fact we only need the /L
quotient value, since one of the two valugsand L, will be simplified in the quotient calculation

of the relativistic operator.
The Kuiper's belt is not located on a sphere, buadelt. If we note, , andr, respectively the

maximum and minimum ray of this belt, then the gnéd above is calculated differently. After
redoing this integral calculation, the result iatttve have to replad®by ./r.2-r, '2. This gives the
following result.

L = 2T“G,o(rkz—rk'z) (12)

We get, from (11) and (12), applied to the Kuipdrédt and the galaxy:

x = VichE rkz_rklz\/E (13)
Pyq

L, g

r. is the maximum ray of Kuiper’s belt (as seen friv@ sun).
r. is the minimum ray of Kuiper's belt.

r, is the ray of the galaxy.

p, is the matter density of the galaxy.

P, 1s the matter density of the Kuiper’s belt.

Finally, the equation of the symmetric contributmming from the Kuiper’s belt can be written:

L, = 2?a\/G,ok[(rk—x)z—(rk ~x)2] (14)
L (e G (0 (15)
Lg pg rg
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Equation (15) has been obtained by dividing eagh & equation (14) by, which has been
calculated using (11). Thig / L value is a function af, the distance of the Pioneer probe from the

sun./r,2-r, "2 has been replaced in (12) tg/ﬂ(rk —x)2—(rk - x)2 , because we suppose naw

different from O.
The problem with equation (15) above is that tigjgagion is only correct for weaker than

(rk +I, ) /2. In order to get a correct equation for anyalue, for the Kuiper belt symmetric
contribution, the idea is the following.

0 using equation (5,

o calibrating this equation (5’), in order to have game value for = 0, and the same
tangent to this curve for= 0, as with the equation (15) above.

Equation (15) is representing the contribution amgrfrom the Kuiper belt, but only from thight.

But in fact equation (15) represents the valugnesymmetriccontribution coming from the Kuiper
belt. Indeed, the contribution coming from the Isfalways greater than the one coming from the
right. This is shown in appendix 4.

Therefore, the remaining contribution, which is #symmetric contribution, is coming from the left.
But this asymmetric contribution has an impacttmrelativistic operator which is only the claskica
Newton gravity attraction of the Kuiper belt. Thigs been shown in [12].

Now we get, after a limited development of (15)pader 1 around=0:

L.onL, = Lonk,., — kX (16)

With:

r 2— 2
LkonLgmax = &g (17)
pg rg

Andk value is such ag,onl, =0 forx=x,.., = [ +r,'=78AU.

Now we can compare equation (16) with equation @fst of all, the equation (16) is true only for
0 < X < Xiper - FOr X> X%, » this equation must be replaced bynL, =0. But the whole final

curve has a strong derivative discontinuity foF X, -

Aroundx = 0, the equation (5’) and (16) are close togetheicdnstruction. The tangent of the curve
of equation (5') ak = Qiis the straight line passing by £ 0, y=LonL, ..), and X=X e, Y =

0). This line is equation (16) for OX <X, -

Thisx,... Value is equal to 78U. In the program of appendix 3, it has been fited14AU, in

order to get the perfect Pioneer anomaly curve.ditierence between 114U and 78AU might
come from the presence of other objects beyon&tinger's belt. For example, there are the
scattered disc objects.

Actually, the numerical value given by equation)(is/not the value of equation (5”) which allows

to retrieve the Pioneer anomaly best curve.
For retrieving the value of the equation (5”), Wave to replace:
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o r,,the galactic ray, by, wherer,,, = 0.9 10 r_.

glast

0 p,,the matter density of the whole galaxy, by, the matter density of the galaxy
near the solar system

Now with those new values, we get:

, 2 - '2
Lonlype = f%g (18)
0

rglast

And the numerical application of (18) is yieldi@@015 which is the value of equation (5”). Used
values for this calculatiom, '= 30 AU, r =48AU, r,, =0.910%r = 13%c,

r, =15.4kpc, p, = 0.89 10" kg /n?, p, = 0.71 10’ kg /n?’. Those are the values used by the
program of appendix 3. (Using, = 0.9810% kg /nT, there is

f 0.7110%
rg|ast = W139 pc= 374pC)

Please refer to appendix 10 for some more detldsatahe calculations of the Kuiper belt
symmetric contribution.

The replacement above gfby r ., can be explained by a simple physical behaviour.

This behaviour is the occulting of the farthest cbwitions of the galaxy by the local gas and
objects. This mechanism is very similar to the exisé of a simple “fog”, which is hiding the lights
which are located behind it. With this mechanidme, galaxy objects which are situated beyond this
“fog” must not be taken into account.

Hence, ther, distance must be replaced hy,, the distance at which the “fog” is beginning tdeh
the further “lights”. It is also the distance oé&tfarthest object which has to be taken into actcfmrn
the space-time propagated deformation contributvamsn calculating the relativistic operator.
That's why we must replace algp by g, .

Let’s notice that this “hiding” effect is probaltlye explanation of the opposite sign which has been
used in [13], in the MAPLE program: << F #=c**2 * diff(tg,x) * tg * (1 - tg**2)**(-3/2) >> has

been executed, in place of << F:x**2 * diff(tg,x) * tg * (1 - tg**2)**(-3/2) >>. (Remark: in

[12], the correct sign was used).

We have also to check that thg, value is less than the thickness of the galaxpraer to confirm
that the sphere surrounding the sun with a raylaqug,,, is completely inside the galaxy. Of

course, this is mandatory, because otherwise tliehweould predict & value (for the gravitational
constant) strongly isotropic, (depending strongiytlee direction of the gravitational force with
respect to our galaxy). This would be immediatelgd out by experiment data.

The numerical values for this checking is the foilogv We haver, . = 450Y, compared to the

glast —

thickness of the galaxy equalgal,,,, = 709 in the vicinity of the sun. Therefore we have
Mast < 98l 40 - It Must be noticed also thaf,, is (weaker but) quite close al,;, . This might be

ast

explained by some dynamical mechanism for the gaddjects. Indeed, whegal,, becomes
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weaker tharr,.., then the locaG value inside the galaxy becomes do increase, Heecgtars

mean speed becomes to increase, their ellipsoajattories becomes to expand, and therefore
gal,,, tends to increase. Finally it exists a regulatitechanism as soon @al,,, tends first to

decrease, which might be the case because theytgatdjects tends to gather themselves as close
as possible to the galaxy plane. The permanent iioitkés regulation leads to gal,,, value quite

close ta

glast *

As a conclusion, let's analyse now the fitting lod tvalues which has been done in order to get this
theoretical Pioneer anomaly perfect curve. Thigfittan be done by modifying,,

andx. . values directly, in the program of appendix 3. Whesdifying those parameters

Kuiper
successively, one may find the perfect curve glwethe program of appendix 3. But, if only,

parameter is fitted, and ¥, is left constant, it is not possible, in theneralcase, to obtain this

perfect curve. Also, it is leftconstanto itsfitted value, then fittingx will finally yield an

glast Kuiper

X«wiper Titted valueclose to the theoretical one

In other wordsyr ., has been strongly fitted, bt ., has not neen modified so much from its

glast

theoretical value. Indeed, the theoretical valuegf., is 78AU (the sum of 30 and 48U), and the

fitted value ofx,,., is 114AU. Of course, with respect to the galactic rangmagnitudes, 11AU

Is close to 7&U.

Therefore, for the fitting there were two parameterie fitted. But the fitting has been done only o
one parameter, the other one was not fitted beutated.

This can be seen as another validation of the mafdéis document.
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9. CONCLUSION ABOUT THE SYMMETRIC CONTRIBUTIONS

9.1. WHAT WE LEARN FROM THE ANALYSIS OF THE PIONEER
ANOMALY

Let’'s summarize the final state of the symmetriotabutions of space-time propagated
deformations, used in the calculation of the reistic operator. This calculation has been used by
the program in appendix 3 and plotted the theaktiarve of figure 4.

First of all, the main symmetric contributions canfem the extragalactic objectk () and the
galactic objectsI(, ). We must add to them the contributions comingftbe Kuiper's beltL, .

In the calculation of the relativistic operatoreamay only focus only on 2 of the 3 valuggs L,
L, , because the relativistic operator is a quotiedt@ne of those 3 values will be simplified in this
quotient. Hence, we have to calculate only, fomepie, L, /L, andL, /L.

In fact, as we will see below, we can $¢t=0, henceL, / L, =0. This supposition will simplify
the calculations, without changing the final resoftthis study. Of course, in reality, is not null,
even inside the galaxy, and this will be remindedifer, when necessary. In fact statigg=0
means that in the calculations we supphgeonstant contribution as part of constant
contribution, or in other wordd: is replaced by, +L,and we put, =0.

Also, the OORT cloud contribution is symmetric. Bus is very weak in front of the galactic
contribution L . This is shown in appendix 5.

The equation oL, / L is equation (5'). In this equation, the valuelgbnL . is given by equation
(17), with the classical values for the Kuiper'stige, ,r, ' and p, ).
But if we use, the galactic ray, ang, , the mean matter density of the galaxy, in equatb’),

then the numerical result is not the one we aréingafor, and which is the value of equation (5”).
Hence we must use different values for those paese

If we user,,, = 0.9 10° r, in place ofr, and p, = p,, the matter density in the vicinity of the
sun, then we retrieve the correct value of equgfh Of course, thisr, . value has been fitted in

order to retrieve this final value.

glast

In physical terms, this means that the symmetmrdautions might be stopped quickly during their
propagations through the galaxy. This “stopping pggtion mechanism” gives an explanation for
the following issues.

o the replacement, of by r ., as seen above for fitting coherently the Kuipertdbations..

glast
o the sign of the force used in [13]. This has to\mdweated in a next version of [13]. In this

document, an encouraging attempt is done in thptehantitled <<GALAXIES SPEED
PROFILES: SOLVING THE SIGN ISSUE>>.
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o It might prevent to get an infinite value for thera-galactic contributions in the equation of G
in [12]. It is written “might” because another pitids explanation of this finite sum is to
postulate a universe finite age.

0 It prevents to get a strongly isotropic value forT@is is confirmed by, <gal,, with
gal,., being the thickness of the galaxy in the vicirfythe sun. Neverthelesg,, is quite
close togal,,, and this might be explained by some regulation raeisim.

o Ther,,fitted value allows also to retrieve the order afgnitude for the sideral gravity issue
(chapter untitled << MEASUREMENTS OF G>>).

o Therg,Vvalue allows also to retrieve the order of magrettat the disparities of the
measurements of G (chapter untitled << MEASUREMENTSG3B).

The used value fok, ., in equation (5) is not, +r, = 78U , the theoretical value, but
Xeiper =114 AU . This value has been fitted in order to retrieveelibst possible curve.

Therefore, the shape of the curve of equation §at decreasing quickly enough for modelling
correctly the Kuiper’s belt which ends at AB.

In physical terms, those remarks means that threreaane other objects (or gas), beyond the
Kuiper’s belt, which must be taken into accounttibiEably, the miscellaneous objects are
candidates. A next version of this document wjllttr take them into account.

9.2. COMBINATION BETWEEN THE CONTRIBUTIONS

Now let’s try to summarize the different kinds aihebination between the contributions.

Once those combinations executédand L, values will result, and it will be possible to calate
the value of the relativistic operator.

What is the combination of two distinct contributsoarriving on the same space point ? The
operator used to combine those contributions veiiehd on the type of the contribution: are they
generated by one luminous point, or by numerousriaas points?

A) ONE LUMINOUS POINT

First of all, there is the case of a small numbesaated luminous points, among a uniform and
homogeneous distribution of matter.

In this case, there is globally an Euclidean spame-metric, because of the uniform space
distribution of matter. In some M point in spades tifferent contributions coming from those
luminous points must be taken into account, incddeulation of the relativistic operator (when they
are aligned on the same straight line with M). Therator used in this case is the square root of the
sum of the squares (equation (8)).

Those kind of contributions are stopped quickly wherpagating inside a galaxy. They vanishes
after propagating around,,, = 450 light year inside the galaxy. This vanishing mecbarnseems

to come from an occulting effect provoked by the gathe galaxy.

B) NUMEROUS LUMINOUS POINTS

The next case is the case of a very important nuwidaminous points.
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For example, the case of extragalactic contribstiap, generated by the extragalactic energy, is

one of them.

In this case, those contributions are took intaaot using a+” operator. For example, this is the
case of the calculation of the approximation of kevis law, in [12]. Let’s remind it. We used, in
[12] the following equation.

L = Lu*tl, = L*g9(X
L, is the contribution coming from the extragalactmtributions, for example.

L., Is the contribution coming from a unique lumingasnt, received on the same point.
as above fot,.

Remark : we may considerer al&Q as being the contribution coming everywhere exttept

considered luminous point: from the solar systexagpt the considered luminous point, from the
local galaxy energy situated before the famoysg distance, and coming also from the extra-

galactic energy. In this example the receiving poirspace is located inside the solar system.

The “+” operator betweeh,, andL,, is used here becausg is a contribution coming from a very
important number of luminous points.

Those kind of contributions are not stopped whempagating inside a galaxy.

C) TRYING PHYSICAL EXPLANATIONS

First of all, the galactic center generates a dlobatribution which is not vanished during its
propagation in the galaxy. That's because it is ggad from numerous luminous points. Of course
this is mandatory because the gravitational efiéthe galactic center is proven by experimental
data.

The explanation of those different behaviours (grgglnumerous luminous points) must be driven
by the analysis of the geometry of the space-timpagated vacuum, as usual.

The operator used in the first type of contributi@eslated luminous points) has been explained in
this document. Equation (8) has been calculated.

For the second type of contributions, (hnumeroudtamms points), we have to imagine the shape of
the space-time vacuum which is resulting from thmerous space-time propagated vacuums, on
some fixed M point.

At eacht instant, on the fixed M space point, there are enams propagated space-time vacuums
coming to.

The combination of these vacuums on M, obeys taulgeof the conservation of the whole space-
time 4D volume of those vacuums. Hence, the fihapge of this resulting vacuum, is locally a
narrow slide of space-time. The effect of this slgléhe addition of a fixed value to the relatiidst
operator.
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Now, this fixed onset of time is a constant funetio space. Hence the frequency of this function is
very low. This makes a big difference with the ficase in which the frequency was very high, for
the shape of the different vacuums on M, eithenglie time or any space direction.

This very low frequency might explain the “absorptimechanism” which has been noticed. Hence,
the galactic gas might behave like a low pasg fitethose space-time propagations. Of course, this
filter is vanishing high frequency space-time defations only after propagations of them through
some quite long distance. That's why we getithis maximum value for the emitting distances of

the contributions for the relativistic operator. Téfere this low pass filter behaviour of the galaxy
gas might explains the maximup, value for the contributions coming from the lumisqoints

locatedinsideour galaxy.

But the contributions coming from energy locatedsidethe galaxy, are generated by numerous
luminous points (of course!). Hence they generdtavarequency global shape, which is not
stopped inside its propagation inside the galaxy.dbso, for those contributions, there exists also
maximum distance beyond which no luminous pointigoation can be received. Indeed, this is the
only way to get a finite denominator for the eqoatofG.

9.3. THE REAL RG LAST VALUE

The calculation which has been done in this docurmgpposes that the contributions coming from
energy located outside the galaxy are equal td& flas been supposed because it makes simpler
calculations, and it doesn’t change the final redit of course, this is not true. In fact, thg,

The real calculation of

value which has been used is only a maximum passddlue forr st

glast *

must take into account the extragalactic contrdndi Let’s call thenl,. We get the following.

L

— [¢] ’
rglast_ real - r glastm (18 )

Wherer
last_rea 1S the real value for,

is the value which has been used in this docunsepposing that, =0.
supposing that, # 0.

glast

glast

L, is the contribution coming from galactic energyisIproportional te value as proven by

glast_ real

equation (11), where one must replé&dey r Similarly, the galactic contributioh

glast_real *
supposing that, =0, is proportional tar,. .
This equation (18’) comes from the following caldida. SymmetricContributions L, =

Lo+l +L = Lo+l => L +L =L, =>r I gos = Ly / Lo = Ly / (L, +L,) => equation

glast —
(18).

glast_ real

The main issue here is that it is difficult to extra, /(Lu + Lg), (or L, /L,), from experimental

data. In appendix 9, it has been supposed.ht, value is between 1/8 and 2.

(In appendix 9 it has been writter=r / x , whereL is the relative contribution coming from the
galaxy energy, and received in the galaxy in atlonaat whichx is the distance from the galactic

center. Hence we gédt /L, =r /X, wherex is the distance between the sun and the galactic
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center.r is the distance from the galactic center wherelL, =1. It has been useg, = Kpc, and
r located betweetikpcand 4 kpc, this givesL, /L, between 1/8 and %2).
This last ranging value far has to be refined. For this, a comparison mayde avith the

measured matter density profile of the galaxy. Qifree it is very rough. Moreover the whole
appendix 9 calculation has to be refined. This doigld a precise.; / L, value resulting from

experimental data. The important point is thabitld invalidate or validate the above reasoning
(low pass filter,r . value, etc...).

glast

Nevertheless, the galaxy study has to be completglyitten taking into account the correct sign in
the equation of the gravitational force. After tmerection of this strong error, the coherence with
the study of the solar system will be possibles™ill be done in another version of this document,
after writing another version of [13].
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10. FLYBY ANOMALIES

The theoretical explanation of the Pioneer anorablyve is probably able to explain also the
“flyby” anomalies.

In this document we will focus on 2 kind of flybp@malies:
o Earth flypy anomalies

o Saturn flypy anomaly.

10.1. EARTH FLYBY ANOMALIES

Earth flypby anomalies are explained in [5]. Thizdment reports anomalies for 8 NASA probe
trajectories when traveling in the vicinity of tearth.

We uses exactly the same theoretical explanati@abage for the Pioneer anomaly, except that the
sun is replaced by the Earth, and the anomalyeis &&x lesser or greater thag, rather than only

for x greater tham,.

X is now the distance between the probe and thénEart
X, is the distance at which the geocentric graviteti@constant is known to be perfect, (that is,

probably the distance at which it has been caled)atin the program of appendix 6, we have used
the value of 1620@mfor x,. This value has been fitted in order to retriexactly the measured

anomaly of the Galilleo | probe.

The program in appendix 6 is calculating the thiecaieperigee velocity of 6 probes.
Its results is the following.

Probe Measured anomaly | Theoretical anomaly
Galilleo | 2,56 2,53
Galilleo Il -2 -11

NEAR 7,21 - 6,6
Cassini -1,7 4,5
Rosetta | 0,67 22
Messengel 0,008 29

Table 6: Comparison between the real and the thiealflyby anomalies for 6 probes. Unitrnsm/s
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Figure 7: Theoretical perigee velocity increasevedor the Messenger Earth flyby=coordinate is
in m/s andx-coordinate is in meter.

The curve above is showing the value of the anomalgnx is varying.x is the distance between
the probe and Saturn at the perigee, expresseedtersn
For plotting the curve above, the following approated equation has been used.

3 3
2 2
D SR 7 i DR BN IC (19)

cV, X ﬁ_ﬁ_ ey % X

Where G, stands for the geocentric gravitational constgistands for the Newtonian velocity at
perihely.

This approximated equation has been calculatedjubagmapproximated equation (3), transforming
this equation (3) in a second degree polynomiab#qn, (usings,' in place ofG, '), calculating the

resulting approximated equation gr', using this equation dg, ' in the classical potential energy
equation. This equation is validated in the progcdrappendix 6.

This equation is interesting because it explairedatll shape of figure 7. Also, it shows that the
anomaly is barely equal to the measured value. §égsns to be an invalidation of our theoretical
explanation.

However, those calculations are much too simplkecabse they suppose that the Earth referential
frame is inertial. Of course, this is not true. Tadculations must be done at least in the
Schwarzchild metric of the sun, and using the nmotibthe Earth, the exact trajectory of the probe,
and the symmetric contributions of surrounding eragasteroids, planets, etc ...).

Meanwhile, the order of magnitude is retrievedalh be seen on table 6 that the theoretical
calculated values share exactly the same ordemlaghitude as the measured values, for those six
probes flyby anomalies. Therefore, here there isargradiction between the three elements
gravitational model and gravitation.
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Of course, Rosetta | and Messenger yields badtsesuiable 6. But this might be explained by the
second correction of Newton'’s law because thosbgware probably travelling along the ecliptic
plane.

10.2. SATURN FLYBY ANOMALY

As well as for the next chapter, a probe passin§dityrn should experiment a flyby anomaly, for
exactly the same theoretical reasons. ThereforeNewton’s law modification is calculating a flyby
anomaly for the Pioneer 11 probe when travelinthévicinity of Saturn.

The characteristics of this anomaly for Pioneepfdbe trajectory, is the following.

o anomalous decrease of the probe before the Sataouster,

o anomalous increase of the probe after the Satwouerer,
Indeed, the Pioneer probe is going away from time and the first modification of Newton'’s law is
calculating a weaker Saturn gravitational forcenthi@wton’s one, when flying near by Saturn.
The sun’s attraction is weakened (by Saturn grawiig less than what Newton’s equation is
calculating, before the Saturn encounter. Als@rafie encounter, the sum of the sun’s attraction

and the Saturn’s attraction is weaker than Newtpresliction.

The program of appendix 7 is calculating this flyf@gturn anomaly for Pioneer 11. It yields the
following result.
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Figure 8: Theoretical anomalous added accelerébward the sun when encountering Satiin.
coordinate is iim/s2 x-coordinate is if\U.

The program of appendix 7, yielding this figures l@en using the following values.

o |,=20000km, is the nearest distance from Pioneer 11 to Satifiits trajectory.

0 X, =2 AU, is the distance from Saturn at which the Satwavitational constanGM¢,
is known to be perfect\] stands for Saturn mass).

The values of the figure above are very strongoaspared to the Pioneer anomaly values, but the
distances range when this anomaly occurs is vesst.shhis range of this flyby anomaly is roughly [
9,550AU, 9.555AU].

We must check that the global Pioneer anomaly cigrgéll correct for this Pioneer 11 travel, after

taking into account this Saturn flyby anomaly. &ctf this global curve shape depends strongly on
thex, value.

For getting the Pioneer anomaly curve of the fiduetow, X, value has been fitted in order to get

still this correct global Pioneer anomaly curveisTiitted value is the one above, and is useden th
program in appendix 7. This program is yieldingufigs 8 and 9.
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Figure 9: Theoretical anomalous added accelerébward the sun when encountering Satiin.
coordinate is iim/s2 x-coordinate is if\U.
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11. PERIHELION ADVANCE

The MAPLE program of appendix 8 is calculating pfegihelion advance in the context of our study.
It yields values which are very close to the GehRegativity values :

Planet GR value 3elt value
Mercury | 42,7848 GRvalue + 0,0044
Saturn 1,66291 GRvalue + 0,0006

1

Table 10: Change in the perihelion advance or pstor by the three elements theory. Units are
arc-second by century.

Those modifications of GR values are coming fromfilst modification of Newton’s law described
in [12]. They do not explain the anomaly of theqassion of the Saturn perihelion explained in [2],
which is of -0.006 arc-second by century.

But, since the calculated values are very cloghadsR values, it can be concluded that the three
elements theory is compatible here with GR. Anyhthwse corrections are probably insignificants
in front of the precisions of actual measurements.

Once again, like for the Earth flyby anomalies, slkeond correction of Newton’s law must be
calculated in this case. This might retrieve themaalous advance of the perihelion of Saturn
described in [2].
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12. MEASUREMENTS OF G

The aim of this chapter is to explain the dispesiin the measured values@fthe gravitational
constant.

The issue is well defined. For nearly three caaesiyG has been measured, without getting globally
a better precision than 0.7%. The reason of tlobally poor precision is the fact that many
measurements values are contradicting each otfagieg into account their precision interval. The
details of this issue is, for example, well desediln [6].

Let’s remark, first, that our model prediction isGavalue depending of the surrounding matter
distribution.

This is not a new idea, it has been suggested]jff9B and [10]. Moreover, it has been proven by
experimental data in [7], th& value varies with orientation. This behaviour lsoaa consequence
of this theoretical idea.

Calculations shows that what is called the <<fimtrection of Newton’s law>>, in [12], is not able
to explain the issue. Indeed, the order of mageititthe theoretical error is below the experimenta
one. Let’s check this quickly with some little callation.

We use the right end of equation (2), which cawh#en:

(20)

3 |2MG'
C X

G = G'{l——

G' is the value ofG for long distances (between the attracting masses)
M is the mass of the attracting object used in ¥peementation.
For theG measurement of [3], we use this equation (20) Witk 9009, which is the mass of the

attracting ball, and =0.02m, which is the approximated distance between thenlba and the

attracting ball.
For the G measurement of [4], we use equation2®) M = M, =10.5kg, which is the mass of

the attracting ball, and= x, = 0.0001m, which is the minimum distance between the balamuk
the attracting ball. | cannot have the exact valuhis distance, in [4], therefore i use a minimum
estimated value. Thig value is the best case in order to get a maximiffierence between the two
values ofG. Therefore we get:

Gl = G 1—§ M G = G 1_§ ZMZG'
c\ Xx ’ YV %
o, - W)
i c (Vx Vx

For the numerical applicatio’ value isG' [1 G = 6.6742867 10" N m 2kg, and we get:

% = 3,7 1" (21)
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This ratio must be compared with the measured gadfi© in [3] and [4], which are
G,, = 6.7174 10" N m2/kg, andG,, = 6.6740 10" N m2/kg:

% = 6,5 18 (22)

The measured value of equation (22) is much greélader the theoretical value of equation (21).
Therefore, the first modification of Newton’s lag/mot able to explain this issue.

But the << Second correction of Newton’s law>> B2] gives much better results.

Let's compare first with data coming from [7]. Ihig document, the amplitude of the variation of
the G value is more than 0.054% as compared to its atesvhlue.

Here the calculation based on the “Second cornectidNewton’s law” is the following.

Step Action

1 Calculating the number of stars which has an impacthe final value ofs during the
measurement. Those stars are located on a sphevarsling the Earth, and the ray of this
sphere is equal to, . Let's remind that,is the greatest distance for an object in the

has been fitted to 450 light

last *

galaxy, in order to have any gravitational effestiarth.r

year (138 parsec), in the program of appendix 3.

Calculatinga, the mean solid angle for each star in this spteerseen from the Earth.
3 Calculatingg, the solid angle done by the “attracting linestween the attracted masses
used in the measurement Gf Those “attracting lines” are the straight lines,space
driven by the gravitational forces vectors betwé®n attracting objects. One must pay
attention to the fact that there exists a grawtal force between each couple of points.
Each such couple of points is composed by one gieémt on an attracting object, and the
other one being on the other attracting object.

glast

N

4 Calculating the ratioa/ 8, which has the same order of magnitude as the malative
variation of the symmetric contributions.

5 Multiplying it by 2, because of the square poweermthe contribution in the equation Gf
The equation o6 is available in [12]. The result is roughtly theam relative variation gf
G.

Table 11: Calculation procedure for a simple ediomaof the theoretical relative error &f
measurements, when changing the attracting lirestibn with respect to the system of fixed stars.

Hence, a good estimation of the order of magninfdée theoretical relative amplitude is equal to 2
alB.

This value is calculated in the program of apper@diXhe result of this program is the following.

The prediction of the gravitational model of theeth elements theory for this value is a mean value
of 0.013%, and a real value greater than this nvadue. Therefore, the order of magnitude of this
model prediction is close to experimental d@t@54%.

This is without taking into account the contributsocoming from extragalactic energy. In fact, the
study of the galaxies speed profiles shows thagehextragalactic contributions might be taken into
account. But the value of those contributions fbe tMilky-way are difficult to get from
experimental data. If we suppose that those eXtati@a contributions are equal to eight time the
value of galactic contributions, then we obtairlkative amplitude equal tb %.
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If it is supposed that those extragalactic contrdns are equal to twice the value of galactic
contributions, then we obtain a relative amplitedeal to 0.12 %.

If it is supposed that those extragalactic contrdmns are null, then we obtain a relative amplitude
equal t00.013 % Those results are given in appendix 9.

Remark: extragalactic contribution can be estimatadeturn with the measured variation of G
(0.054 %.). There is two way for this. The firseamto simply calculate Lu. We have, inverting the
equations used in table 11 and appendix 9:

. 3
L = L, SolidAngleBal NbStarsLadg.s | AG 1| = 101L, 0 L, and
8 lgoc | G
2
Ratagal = rglas\/l{iJ P 680000kpc = 0.05R, . This last result shows that
,0 .
¢} universe

the farthest distance beyond which no contributicamever received, has the order of magnitude of
the “ray” of the universe (taking in account thegaision of these calculations). It tends to shows
that there is no occulting mechanism during thepaigation of the contributions coming from the
farthest region of the universe. This is consistett the existence of a cosmic microwave
background radiation. On the other hand, therensogculting mechanism inside the galaxy, which
is the case also for some light frequencies asnesvk This valug, [1 L is consistent with the

calculation done at the beginning of [13], whickeaghe velocity of the galaxies inside their groups
The second way to evaluate it is the followingtr&gyalactic contribution could be much lower
(near null) along an attractive line which is coimead in the galactic plan. That's if the occulting
effect of the galaxy is acting for those extragttacontributions. But, on the contrary, along an
attractive line which is not contained in the gdlacplan, extragalactic contributions are much
greater. The difference between those two casesnistraint by the relative measured variation of
G. The angle of the cone of the attractive lineshef balance used during those measurements is
equal to roughtly 12°. This angle is weaker tham dimgle from which the width of the galaxy is seen
from the sun. Probably, the direction of thoseatting lines during the day period is crossing over
the galaxy (to be confirmed). Therefore, the vaoiatof G is probably completely affected by this
mechanism. The equation gives then dG/G = 2 dLui(bh then 0.054 % = 2 Lu/(Lu+Lg) and
Lu/Lg = %2 0.054 % = 2.7 10-4. This value has todbecked with the other calculations (galaxy
speed profiles noticeably). This is not compatibith the first result abovel( [ L ). This tends to

confirm that those extragalactic contributions ai@ occulted by the galaxy dust.

Now let’s try a simple calculation for estimatidnyt without using the stars.

It will be supposed that the stars has no effethénmeasurement &. We will calculate the effect

of the surrounding mountains, which may be locatedind the apparatus during the measurement
of G.

It is assumed that exactly the same experimentéierecuted, but in two completely different
places. And the important difference between thethe distribution of matter in the surrounding
neighbourhood during those experimentations.

0 experimentation 1) is done at the very top of hdrilthe floor of a desert, and this floor is
completely plane outside the hill on which we areaked.

0 experimentation 2) is done in the middle of a waiMhich is surrounded by mountains.
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The interesting thing is that the measured valug wfll be completely different between those two
cases, even if exactly the same experimentatioarapys and measurement procedure is applied.
Indeed, the presence of the surrounding mountaittse second measurement has an important
effect on the final measured valueGf

Let’s remind equations from [12]:

/8R
LO _
g = L—X = 8R (23)

X

[8R
LO _
2 = — VX (24)

oL+ L,

WhereL, stands for the result of the symmetric contringian the case of the experimentation 1),
which are those of the solar systeu,, the galaxyl,, and the extra-galactic objects,
L., is the added contribution in the case of expertatéan 2), which is coming from the nearby

mountains.
For the two cases, we still get the following edua, coming from [12], withe being eitherg or

e,, depending of the experimentation:

cos@) = oper(LLL2) = i+e (25)
1+ %
2
e
tan@) [ > (26)
Fo= mC2d tan(@) tang ) _ 27)
dx  (1-tan2@)f
Therefore, using equations (26) and (27), we geteXperimentation 1):
mc de
F 0 — 2 28
! 4 dx (28)
And for experimentation 2):
me de,
FpFOo o — =2 29
: T o & (29)

Now, using (28) and (29) we get:

Fl _ Fz 0 e12 — ezz
F €2
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Lo
A

For the estimation of,, / L, we will use equation (13), in the case of thesgrdoutions:

R P e

— (30)
I‘0 rIglast p g

In fact, thisr__.. value supposes that extragalactic contributioasegual to 0, and this is not true.

glast

But this supposition doesn't change the final rekalow for (G, - G,)/ G.. Indeed we get

r
Ly =Ly +L,+L, 0L +L, =202 |Gp , which is equation (11), from whicty,,, has been
c

calculated with the help of Kuiper fitted contritorts.
Because of supposed Newton’s law, this gives theesaalue for the corresponding ratioGf

G_L'Gz — Fl'Fz

G R

= ZrL {&
r.glast pg

r., stands for the maximum distance between the sading mountains, and the emplacement of
the experimentation 2). We will usg = k.

Where :

stands for greatest distance between a galagtctodnd the place of the experimentations. We
=450LY =138pc for

r.glast
have used above, for the Pioneer anomaly curvelledion, the value

this.

P, 1s the matter density of the galaxy, like abovedquation (17). Its value has been set to
0.003M, /AL® = 0.709 10°°kg /nT, which is the matter density in the galaxy, rtearsolar
systemM, being the sun mass.

p., Is the mean matter density of the surrounding rtains of experimentation 2). We will use

glast

P, =1.7 g /cnt, which is weaker than granite matter densjby, (. = 2.7 g /cn).
With those numerical values, the final result is tbllowing.
G-G = 0,9 18 (31)
G

The order of magnitude of this theoretical valuthiss same as the measured one, of equation (22).
This proves that the order of magnitude of the meskdifference can be explained by this
correction of Newton’s law.

The next step would be to get the information efeéiact locations where the two experimentations
of [3] and [4] took places. It will be needed athe exact values of the distances between the
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attracting objects, in [3] and [4], in order to@ahte precisely the theoretical ratio as abovd,tan
compare this theoretical ratio to the measuredobrgjuation (22).

As an intermediate conclusion, the gravitationatlgl®f this study, explained in [12], might
explain precisely the great historical disparityveen the measurements@f

We have shown that this theoretical valu€&ag depending on the distribution of matter in the
surrounding neighbourhood (buildings, hills, mains$, Earth surface, the sea ...) of the place
where the measurement®fis done.

Moreover, this study might give, with the help ofr dig database of tod&y measurements, a
precise value for th&’ gravitational constant, which is the “classicalagtational constan®, but
valid only for very long distances.

Thereatfter, with this value @&’, it will be possible to predict the exact valueat any distances
and in any cases. Noticeably, whatever the didiohs of the surrounding matter in the
neighbourhood, it would be possible to calculatewhlue ofG. This value ofG will be valid only
for the local application of Newton’s law.

If this case, there is no doubt that the precisibthe measurement &', and the following
calculations of5, will be much better than today, and with no langdigparities.

It must be pointed also that the gravitational mad¢his document is predicting that the same
measurement db, done in two different places, will give complstélifferent values, and that this
difference can be actually calculated by this model

Frédéric LASSIAILLE 2011 Page 42



Frédéric LASSIAILLEe 2011 Page 43 18/11/2013

13. GENERAL RELATIVITY EQUATIONS

13.1. EQUATION OF THE GRAVITATIONAL FORCE

The correction of Newton’s law is given by the &mlling equation in almost any cases.

[ 2R']( dsj
s + S+ 2 XS
mMG' X dx

= X2 . : N3/2 (32)
crs[BR [ g4 JBR_2R
X X X

M is the attracting masB) the attracted mass, af the gravitational constant valid only for long
distancesG’ is roughly equal t& plus 0,04% ofs. We have alsR'= MG/ ¢.
This is the gravitational force between two pinrged masses inside a universe whom matter

density is varying. In this equatios,is the varying symmetric contribution. In otheonds, the
contributions coming from the universe matter digreie supposed to be like below.

3

L= L,s is the symmetric contribution,

S

L, = LO‘/E is the asymmetric contributiolR' = MG/ ¢, whereM is the
X

attracting object generating this asymmetric couotion.

Equation (32) has been calculated using this dabmiath tip

czd tan(@) tan¢7)3/2 _ EZE(( tam))2 1

dx (1-tan2@ ) 2 dx 0) (1—tan&)/2

F = m

For s=1, equation (32) becomes:

1+ 2R

_ mMG' X (33)

X2 : . I3/2
L+ [BRY (1, [BR 2R
X X X

It gives what has been called in this documentfir& correction of Newton’s law”.

3

A limited development at order two, of this lastiatjon, as a function qf/5 , yields the following
X

(34)

mMG' 2R N 19R'
X2 X X

R0 - [1—3—

Therefore this last equation is correct onlyRdmweak in front oi. It will be used for the
calculation of the new Schwartzchild metric, below.
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Now for s different from 1, and foR’ very weak in front ok, equation (32) becomes:

s+ 2xd—s
E - _ mMG' dx
3 X2 s
df
I+ f+2x—
E - _ mMG dX (35)
: X2 @+ f)

It gives what has been called in this documentdkeond correction of Newton’s law”.

It has been writters =1+ f where “1” stands for the (relative) extragalasyommetric
contributions, and for the (relative) galactic symmetric contributsohis Newton’s law corrective
term (correction term on right hand side of equa(i8b)) is negative itif / dx is negative and

strong in front of(1+ f ) /(2X) This explains the negative values for the graaiteforce in the
case of NGC 3310 and NGC 7541 galaxies, for exanhpdieed, as soon as the derivative

valuedf / dx is negative and strong, as welbaguite strong, then the gravitational force becomes

negative. Those cases can be found in the mattsitgelistributions of the NGC 3310 and NGC
7541 galaxies, for example.
In the special case of a galaxy with a matter dgnsirying with a 1/x2 law, we get the following.

Kk r
P=% T =7 X—T
X X = F 0 -mgG -
x>> R’ (X+r)

Which explains the classical bell shape of thesita$ measured speed profiles. It explains also the
“flat” shape of the right hand sides of those spediles.

The gravitational force is null near the galaceater, forx = r. It explains also the solid part of a
galaxy with an analytical calculation.
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13.2. SCHWARTZCHILD METRIC

The Schwartzchild metric is modified in such a way.
d?= g ¢ dé- ¢ df- Pd?

1) General relativity

2mG M MY
M = gtt =1l grr :(1__j

c2 r

2) Three elements theory

-1
v = 2MG o :1_M(1_ M] . :(1_M(1_ ﬂD
c2 r r r r

In other words, general relativity equation remdhessame, buM =2mG/ & is replaced by

y -(1_ M_j.
r
The corrective terml— 2, /M— = 1—2,/ 2mG , comes from the first order part of equation (@A
r c r

first correction of Newton’s law).

G' is the gravitational constant which is valid ofdy very long distances. For calculations of this
corrective term, one just redo the calculationghefSchwartzchild metric of general relativity, ngi
the new gravitational force in place of the Newtore:

F == ml\iIG is Newton’s law,
r
Foer = —%(1—3’ ZMG J is the corresponding new gravitational force.
r C r
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13.3. PARAMETERIZED POST-NEWTONIAN FORMALISM

The PPN parameters (Parameterized Post-Newtoniarafism) are exactly the same as for
relativity. Indeed, the only differences betweelatieity and the gravitational model of the three
elements theory are the following.

o0 Lorentz equations are true only between inertifdresce frames which get “energy
attached locally”. “Energy attached locally” toedarence frame (O; ct, X, y, z) means
that there is a particle or a group of particle®mihinertial point is constantly equal to
0.

o Newton’s law is not used, like in relativity, b@trieved. There is a slight difference
between Newton’s law and this corrected Newtonis la

There exists another difference, but which is ngiacting the macroscopic scale. In the context of
the three elements theory, the luminous point spiate deformations are asymmetric, and this
yields an isotropic behaviour of the gravitatiofate. But this doesn’t impact the macroscopic
scale. However, this gives the opportunity to depel unifying theory.

Anyhow, the compatibility with relativity is suchat each post Newtonian parameters are equal to
their relativity values.

Each relativity equations remains also the sameg@b>Einstein equation because this one is
calculated using Newton’s law. In the gravitatiomaddel of the three elements theory, Einstein
equation is only an approximation.
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14. TULLY-FICHER RELATION

This relation has been proven from experimenta daf11].
For retrieving this relation, equation (32) is usasl well as the classical following equation:

(36)

This last equation supposes a circular trajectbthi@ stars around the galactic center.

F, is replaced in this equation by its expressio(8). The last correction term of (32) has to ke se
to 1 in this case because we study the speed stdngin a galaxy is much greater thar’.
Therefore, equation (35) is used in place of eqgua{32).

The maximum value of, the speed profile, is then searched, with thesatal tip of searching

where the derivative of thisfunction is equal to 0. The final result of thesdculations is the
following.

Supposing the dust and gas density constant througind for all the impacted galaxies, Tully-
Ficher relation is retrieved only in the case ofp following a x™? law, wherepis the matter

density in the galaxy, andthe distance from the galactic center.
Of course, this prediction has to be checked frioengalaxy data which has been used in [11].

Details of those calculations are given below.

, o k
B is the power for matter densipjinside a galaxy, supposed to be of the foym;—ﬂ,
X
. o k
Yo is the matter density inside a galaxy, supposdxttof the form:p = —Z
X
whith k being a constant depending of the galaxy.
M Is the (attracting) galactic center mass.
M, the galaxy’s mass.
m mass of the attracted object.
G’ gravitational constant valid only for very longtinces.
f symmetric contribution coming from the galaxy’gesits.
X distance from the galactic center.
% speed of the stars (locatedkatistance from the galactic center).
Vo maximum speed of the stars.

v = -F; X
m
df
1+ f+2x—
v = MG 3dx (37)
X @+ f)
dv . .
w = 0 Searching the maximum valuevof
X
& XA+ )Bf+2xf ") = (@ f+ xf )W f+ X'
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2
After calculations. It has been usfed=% and f"= C:j : . Let’s write now: f =La, therefore
X X X
a :g . The above equation becomes:
ar(2a-Dx“+r) = X' +r—2ar )K" +r—-3r)

Now let's write: y= X' k=a(2a-1) a=-1+r b=-1+ 3.
With those notations, the last equation becomes:

y2 — (a+b+Kry+ (ab-RE = 0

Therefore,
y = %((a+ b+ K + /(a+ br B2—4(ab- )
y = kr k, being a constant.
1
X = Kkr k, being a constant.

This x value is now inserted in equation (37), usiﬁg%. It yields:
X

2

VvV = M2G'2%kr @

Now r must be replaced by its expression as a funcfidn. o

14.1. SUPPOSING DUST AND GAS DENSITY CONSTANT

For this version of the calculations, it will besamed:r = k, VM , k, being a constant. This means
thatr,,, is supposed to be constant, when changing theigalgBecause in this cases
proportional by construction to, which is proportional to the square root@fbecause of equation
(11) used when replacirigby r ..., and p is proportional tVl everywhere in a galaxy). This

assumption means that thg,, “horizon” stays constant whatevél; and therefore that dust and gas
density stays roughly constant whatever the galkg get finally:

2——

viooo= kM, ”

g

k, being a constant such as:

Frédéric LASSIAILLEO 2011 Page 48



Frédéric LASSIAILLEe 2011 Page 49 18/11/2013

kg = Glzk; k7ﬁ2—k016, W|thk0 = 0’2+20’_1+0'\[0'2+40’_2
Ko
. o . 2 .
Here Tully-Ficher relation is retrieved only f&_ﬁ = 1, which meansf8 =2

Figure 12: Plotting of the function= 2(x-1)/xfor x between 1 and 4. The
interesting point isx=2, y=1).

14.2. SUPPOSING DUST AND GAS DENSITY PROPORTIONAL TO
MATTER DENSITY

For this version of the calculations, it will bepgpuwsed that dust density is allways proportional to
galaxy matter density, everywhere, and that théficant of this proportionality does not depend of
the galaxy in its “Tully-Ficher group”.

r

9

Therefore equation (11) must be used, replaBiby r, : L = 2a-2./Gp . By oher means,
c

glast *

using equation (38), the variation gf, can be deduced:

fglast

-0 n(u) du
T=N e j IR
N if it is supposeah strong enough, and half extinction is
0
. = O N Nyjast 0= g 0 In(2) L = 2'”(2)0'\/@
obtained for 2 therefore there is glast on and ocn
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Jp

Thereforel, thenr is proportional te*—.
n

So let’'s suppose nowto be proportional tqo . In this casel,., thenr is proportional te\/lt
p

And matter density is globally, when changing th&gy, proportional td/ (this last point is

coming from the fact that galaxy matter densitgupposed to be always of the foyo= Lﬂ; hence
X

there is only one scale factor for the galaxy msjsse

Therefore it can be writter: :% , wWith k; being a constant. Therefore there is:
4

k, being a constant.

1
|
N

Here Tully-Ficher relation is retrieved only w B

14.3. CONCLUSION

The result depends of the gas and dust density piitd.

If this density is supposed to be proportionahte galaxy density, whatever the galaxy, tflen-2,
which is ruled out by experimental data(of course a density profile with an x2 law isadilout).
This might be explained, for example, by a matesity not proportional to galaxy dust, in the
galactic center. Indeed, it has been supposedtatier density is proportional to the dust in the
chapter untitled << GALAXIES SPEED PROFILES: SOL\GNTHE SIGN ISSUE >> This allows
to solve the issue of sign, which isoaal issue. But anyhow this proportionnality cannotberect
globally, otherwise the global theoretical speeafifg would be far from the measured one (as
mentioned just above). Therefore, it is hoped thaiter density is not everywhere in the galaxy,
proportional to the dust. Otherwise this would @ioly mean an invalidation of the model of this
document. This has to be checked with experimelatia.

On the contrary, if dust and gas density is roygtdinstant through and whatever the galaxy, then
L= 2. This is completely compatible with the global m@&@d speed profiles.

In this case, the local “waves” of the speed pesfiire strange but nevertheless can be explained by
a local proportionality of dust with matter densityhhen the model is explaining each issue correctly
And anyway the maximum value of a speed profilgrabably more driven by the global shape than
the local waves of this speed profile.

But even this case, we g8t 2 only if the constant dust density is not depegof the galaxy,
noticeably if it is not varying with the galaxy’sass. Of course this seems to be uncorrect at first
glance.

As a conclusion, available experimental data ateenough in order to check if the model is
retrieving Tully-Ficher relation.

It is needed:
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» the value, or better, the matter density profiles afsth galaxies (the group of galaxies used
in [11]).

* The gas and dust density profiles for those gataxie
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15. GALAXIES SPEED PROFILES: SOLVING THE SIGN ISSUE

The aim of this chapter is to solve the sign isaude calculation of the galaxies speed profiles.
This issue has been noticed in [13]. It is thedfwihg.

» Galaxies speed profiles are not retrieved withetkect theoretical equation (27).

» If another equation is used, then the theoretigaéd profiles are closed to

mczd tan@) tan ) |
dx (1-tan 2@ )§?

experimental ones. ThiewequationisF = —

which is exactly the opposite value of equation)(27

For this reason, and because of the existencdimftalistance,r,., in the reception of the space-

time deformation contributions (showned above dutire study of the Pioneer anomaly), an
extinction mechanism is supposed to appear intbygggation of the space-time deformations
through the galaxy.

For modelling this extinction behaviour, it is segpd that the dust and the gas of the galaxy acts
like an amount of particles. This creates like@“fwhich extinguishes light. This is a very clasdi
mechanism in astrophysics, called “extinction”;avsorption” mechanism. Of course, this is not
strange since electromagnetic waves of light appased to be generated by space-time
deformations in the three elements theory. Invgrseis not surprising that those fundamental
space-time deformations are subject to the sanrecéinn mechanism.

In those calculations it will be supposed thatdpace-time deformation are propagating along
straight lines. Thoses particles stops the propagaf the space-time deformations, when the
straight lines representing thoses propagatiomssatt any of those particles.

Therefore, for any slide of dust (or gas), an icg@tion ratio can be calculated as follows.

The well-known absorption cross section equatiadhesfollowing:

dN

— = -Nno
dx

Where, as usual in this equation:

N is the number of incident beams.

dNis the negative number of absorbed beams, betthegpointsx andx + dx along the path of a
beam.

n is the number of absorbing particles per unit sy particle density).

o is the particle cross section.

This yields directly the following equation:
—JJ n(u) du

T == =e° (38)

WhereT is always called the transmittance, adgl is the initial number of incident beams firstly
emmited by the source, is thex value for the emmiting source(u) is the particle density at the
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distance, and is the location where this transmittance is caltad. It may be noticed that the

absorptiomA is equal toA = aj n(u)du, and thatC, = J' n(u) du is the particle’s column density.
X X

Let’s go back to equation (9). Now this equationstrae modified, taking into account this
decreasing value of the received symmetric cortiobga. The new equation is the following.

8R )
e

_ NR
= % 8n, N, X, (40)

n, is the number of luminous points which are locatethe solid angle, at the discrefedistance

from theO point. It can been calculated, using equation):(9”

X% N m, G
|_2 = 8a2_p__
¢ %“ d> N, ¢x
8a°G m, N
_ 8a%G N
= 2. dp—-x,
NO

2
C X

The serie to integral transform is the same as@bothis document, with some little add-on:

8a°G (e N
2 — g
L, = < IO p—Nox dx
) 8a°G  (rym oo a
12 = = jo pxe ° dx (41)

Hence, the best way is probably to calculate diehe right and left contribution and to apply
classically the relativistic operator. This is daméhout any approximation. Therefore, we restart

from equation (41):

2 ZG . —JJX.ndu

Ly = — a\/j_rgp(x—y)e v dy (42)
2 ZG fy —afndu

L, = Ta\/jx p(y—x)e ©dy
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8R
Lml = 7
ul = u
u2 = u
Li = Lml + Lgl + Lul
L2 = LgZ + I—u2
2L L
cos@ ):ﬁ (43)
2

This set of equations is difficult to program. ledeeven if the functiopis a fitted polynomial, the
first integral of (41) figuring the extinction cohn, is difficult to calculate. Therefore, the sadut
here will consist in approximateto be constant.

This gives immediately for equation (38) the ufofibwing approximation:

r o gt

(44)

This approximation is valid if it is supposed thas constant in the integral of equation (38).
When studying this extinction mechanism for thener anomaly, for example, the validity of this
approximation will be done after calculation of teagth () of the integral domain. Of course, it

will be calculatedr,,, [1 140pc, which is roughly speaking 1 % of the milky wayuieter. In this
1% slice of galaxy of course the gas density casupposed constant.

So let’s suppose andp constants. After calculation, this yields finaly L, the symmetric part of
the galactic contributian

L2 = 8a°pG (1—(1+Jnr

glast

Je o) (45)

—JNr

Let’'s approximatee © " to 0, which is possible because of the occultati@chanism, and by
definition of r,.,. (Another way to understand this is to see thatgst bound of the integral as

being infinite, which is in fact the real case silhe luminous points are located everywhere along
the considered cone). Let’s just remind that thigassible except for a location at the end of the
galaxy. This yields immediatly:

2 = 8a° G
g - o2n2c?
2\ 2Gpa
Lg = - (46)
onc
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It has been searched the gas and dust profilesofoe galaxies. This is a long and difficult work.
Therefore, for a quick overview, it might be supgashatn, the density of dust (and gas), is roughly
proportional top, the galaxy matter density. More precisely, itl e written :

n = mﬁ 47)
mp

mis the relative density of gas. This non dimensianable will allow various supposition of tms
distribution over the galaxy. Noticeably, it colld possible to suppose that m is constant roughly
through the galaxy, and that it decrease whenngetiose to the galaxy center.

This yields finally the following.

L - 2/%am “8)

? gcmyp

Now if mremains constant there is an opposite sign foetfeet of o on the final contribution.
Hence the sign issue has been solved. But of cauresmains to check if those new theoretical
speed profiles will be still close to experimerdaks.

L, is the value of the symmetric contribution comirgm the galaxy.

But equation (48) is probably not a correct equetar distances close to the galactic center. lddee
the approximation which was used above is not valitie case close to 0. Fon weak, the column
density integral domain is great, amdan no longer be supposed constant.

Therefore, the solution used for the programs efappendix is to calculate with those approximated
equations, and discard or to fit the curve closaéogalactic center. Near the galactic center, the
relative density of gas and dust is probably ddférfrom what it is in the rest of the galaxy.

Therefore the absorption mechanism is probablyeifit.
3

The effect of bulge contributions (and those ejraifl be replaced by &, x 4added contribution,
which will be fitted in the program:

_3
L = Zﬁ;e” /n?p bR X 4 (49)
g

Let’s remark that it should be more coherent tawake the square root of the sum of the squares of
those two contributions. Indeed, this is the foranpiledicted by the model in this case, which
ensures linearity of gravitational waves. But thm here is only to retrieve the shape of the curves
for the short distances (closed distances frong#h&ctic center), without discarding them
completely.

The program located in appendix 11 calculates #éve speed profiles with this new equation for the
symmetric contributions. This program is exactly #ame as the program of [13], but modified with
this new equation for the gravitational force. Tadculation has been done using equation (35), for
optimizing computation performances. This equa(&®) was checked, by program, to be
equivalent to the exact calculation in this case.

Of course with this equation (49), the sign issusalved. In the program of appendix 11, the
parameters of this equation have been fitted ieroi@ get the best possible curves.
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The resulting curves are given at the end of appelid The global shape of the experimental speed
profiles is still retrieved, but nowithout any sign error. The result is better or worse than the
result of the initial program of [13], dependingtbé galaxy:

* The small variation “waves” of the experimentalvas are still retrieved, each of them, for
each galaxy.

» The global shape of the curve is still retrievadt, tot exactly the experimental one, like
before with appendix 13 program (better or worggedeling of the galaxy).

It is highly possible to improve those curves, heseathe used data aren’t precise enough. Most of
all, there is a strong need now for separated madtesity curves: the stars density curve, and
separately the dust and gas density curves. Toumled with an exact equation in place of equation
(49), taking into account separately the dust dgmsirve, the gas density curve, and the total
density curve, is mandatory. The best should be, e&cond step, to execute the exact equations
without any approximations (equations (42) to (43))

But for the moment, | am very sorry but | do novéshose experimental data. | do not have time
left for such a work.

Therefore | cannot improve this work.

As a conclusion, this has to be reworked as soonags precise experimental data will be available.
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16. PIONEER ANOMALY BEFORE SATURN

It has been studied above the Pioneer anomalyelaydentric distance greater thanAO (beyond
Saturn).

But the theoretical curve of the Pioneer anomatyalpredicts a negative anomaly for distances
weaker than 1@U. This is the case of two kind of theoretical cevbe “first” and the “second
modification of Newton’s law”.

The program of appendix 12 is calculating the tegcal orbital period anomalies for each planet,
taking into account the following.

o The main belt of asteroids.
0 The Kuiper belt.

0 Supposing thaG, ' is perfect on Earth.

The results of this program is the right columnadfle 14. (For the left column, just change one li
of appendix 12 program: replacelss<on_Lg :=Lk on_Lg+ Lm_on_Lg:>> by

<<Ls _on_Lg: =Lk on_Lg:>> and re-execute the program

Planet Without the main belt. Taking into account he main belt.
Mercury -1.28 -1.24

Venus -0.370 -0.345

Earth 0 0

Mars 0.400 0.299

Jupiter 1.31 1.72

Saturn 1.56 1.96

Uranus 1.76 2.16

Neptune 1.85 2.26

Table 13: Theoretical relative errors for the aabperiods of planets, calculated for the eigtmpta
at once. Units are: x1f).These errors are the periodic orbital value srrdivided by the periodic
orbital value itself.

The second column of this table shows an impodédfgrence between the four inner planets and
the four outer planets. This is due to the presentiee main belt of asteroids, located betweensviar
and Jupiter. Indeed, the table shows that betweans khd Jupiter, the anomaly is increasing much
more with the presence of the main belt than witlitou

This behaviour is explained also by the progranvesiyrand by equation (35). Indeed, when passing
through the main belt, the valuefqthe symmetric contributions coming from the miagtt of
asteroids) is decreasing brutally. This decrealsasytwo parrallel effects on equation (35). It
decreases the denominator, and it increase&xX.df/dxon the numerator (becaudkdxis negatice
inside the belt, and is vanishing outside the)b&herefore, the final attraction force is increasi

very much when passing through the main belt, fioensun to the outer space.

This mechanism gives an important prediction ferriodel of this document. It might explains the
apparent lack of knowned asteroids in the main bihce, the ephemerides shows that there are
missing asteroids in order to explains them colyect

Here is a possible theoretical explanation of thystery.
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Now the calculation must be done once again, takittgaccount the four inner planets first, and the
four outer planets, after. Indeed, like the ephéesrcalculation itself, two different calculations
must be done, one for each group of planets.

Planet Inner planets only. Outer planets only.
G, perfect on Earth. Maximum error minimized.
Mercury -1.24
Venus -0.345
Earth 0
Mars 0.299
Jupiter 1.05
Saturn 1.29
Uranus 1.49
Neptune 1.59

Table 14: Theoretical relative errors for the abijieriods of planets. Units are: X4QThere are
two different calculations, one for the four inpdanets, on the left, and one for the outer plamets
the right. For the left columrG, _is perfect on Earth. On the rigt, is perfect when located 10,39

AU away from the sun. Witﬁ]i@h value, the maximum relative error for the fouresyslanets is

minimized. These errors are the absolute erroedbdic orbital time value, divided by the periodic
orbital value itself. The left column is exactheteame as the right one of table 14 for the fouerin
planets, therefore, calculated with the prograrapgfendix 12. The right column has been calculated
using the program of appendix 13.

This table shows that the order of magnitude cftiet errors id404, and the maximum value is for
Mercury:-1.24x104.

Now let’s calculate the maximum relative error RLIephemerides simplified calculations,
available inhttp://ssd.jpl.nasa.gov/?planet_pos

Planet Inner planets Outer planets
Mercury 1.0 x10?

Venus 0.467 x10?

Earth 0.186 x10?

Mars 0.290

Jupiter 1.22
Saturn 71.6
Uranus 36.5
Neptune 5.64

Table 15: Maximum cumulated relative errors of talperiods of planets, for JPL ephemerides.
Units are: x10* The program calculating those values is availablppendix 14. For the details of
the signification of those values, please refahtoheading comments of the program which is
located in appendix 14.

Now we might compare theoretical values with soxgeemental data. Let's add the Mercury
relative error to the Mars relative error. Thisegwan estimation of the whole theoretical deviatibn
table 16.
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o For table 15, we gRRelMax0= 1.24x10%+ 0.299x10%*= 1.54x10*
o For table 16, we g®RelMax1= 1.0x10%+ 0.290x10%= 0.30x10*

And finally:

Rel ..o
Rel ..

This is greater than one.

May be this could be explain by some extra meclhanssich as the effect of the solar wind plasma.
Indeed, the solar wind might attenuate the spawe-tleformation propagations coming from the
sun.

Let’s remind that a similar mechanism has beenistlic this document for the space-time
deformations coming from the galaxy’s object, which attenuated by the galaxy’s dust. It has been
shown that this mechanism would be abble to exptaancoherent manner the sign issue of the
galaxies speed profiles, the exact Pioneer anomatlse, the sideral gravity value and the order of
magnitude for the disparities of the measuremef. of

Indeed, an attenuation of the sun’s contributioonsilal leads to a decreasing value of the
gravitational attraction coming from the sun. Ittlcompensate this too strong theoretical
anomaly above. But of course, this hypothesis ddetworked.

Remark

For the four outer planets, the ratiolelow 1.
To be worked.
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17. CONCLUSION

The Pioneer anomaly has a purely theoretical expilam, based on the three elements theory.
The details of this explanation are explained en¢hapter untitled << First modification of
Newton’s law >>, in [12].

The theoretical curve is close to the measuredeing. of all, for distances ranging from 10 to 20
AU from the sun, the anomaly is perfectly explain@dhout any fitting modification.

Noticeably, the value 08.74 10™°m/¢ is retrieved with a precision of 17%.

For distances greater than 20, the theoretical curve is decreasing more thamtéasured one.
But this can be explained by the presence of thpd{is belt, and some other objects beyond it. The
calculation shows that there might exist an abgmmpnhechanism in the propagation of the space-
time deformations generated by the galaxy’'s objddiss mechanism might elude a calculation
issue for the stars speed profiles, in [13].

This mechanism and the “horizon value” ofiif,(,) are in accordance with the following.

o the Pioneer fitted anomaly curve. One parameter wask fitted () where one could
except to fit two parameters (. and X, ),

o fixing the sign issue for the gravitational forog[13]. This must be completely
evaluated in a next version of [13]. But in theuattdocument here, an encouraging
attempt has been done, using this occulting meshani

o the width of the galaxy r(,. < gal,)

0 sideral gravity,

o the disparity of the measurementsf
In a more general way, the study of the Kuiper$ &gnmetric contributions, along with the study
of the dark matter mysteries, should enable usittetstand fully the mode of propagation of the

space-time deformations contributions in the candéxhe three elements theory.

In this document, it has been shown also that thesdifications of Newton’s law are predicting the
following.

0 An increase of the gravitational force toward tbe when passing through the main belt of
asteroids in the direction of outer space. Thiseddatceleration might explains the
ephemerides “missing asteroids” mystery in solatesy.

0 An added Saturn flyby anomaly of Pioneer 11 trajgctvhen encountering Saturn. This is
a short distances acceleration value, which mustdded to the “classical” Pioneer
acceleration anomaly.

o Tully-Ficher relation should be retrieved only fyalaxies with a matter distribution
following a 1/x2 law. (Calculations to be confirmby experimental data).

o “Sideral gravity”, shown in [7], which is theoredity retrieved.
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o0 The very old disparity mystery, for the gravita@beonstant measurements, with an order
of magnitude which is close to the measured one.

o Too strong anomalies for planets orbital perioldeotetical relative errors are fith time the
maximum experimental error for Mercury. But thisgimi be explain for example by some
attenuation mechanism for the sun’s space-timegmaiged contributions (solar wind).

For the mysteries below, it has been checked tieatfirst modification of Newton’s law” doesn’t
explain those mysteries. In some way we can coediat the model of this document is compatible
with gravitational measurements here. But the “sdaoodification of Newton’s law” must be
calculated. In those cases this seems to be caatgatico do.

o Earth flyby anomalies.
o Perihelion advance of Saturn.
As a conclusion, we can write that the gravitationadel of the three elements theory:

o is compatible with relativity. Noticeably the PPBErpmeters are equal to those of
relativity,

0 seems to be compatible with gravitation,
0 is encouraging for the explanation of the perihelolvance of Saturn.
0 is very encouraging for the explanation of the E#igtby anomalies,

0 gives an explanation for the Pioneer anomaly, teek’ matter” mysteries, sideral
gravity, the disparities of the measuremenBpénd the ephemerides “missing asteroid”
mystery.

o0 But gives too strong anomalies for the ephemerd@dercury, Venus, and Earth.

As a more global conclusion, the gravitational madehe three elements theory seems to be
validated. As such, this is a validation of theethelements theory itself.

A next step will be to solve definitively the siggsue for the galaxies speed profiles mysteryadt h
been shown by calculations and computing thatdiigis issue is solved quite completely by the
occulting behaviour of the dust of the galaxiest tBe resulting speed profiles, calculated now with
the correct sign, are decreasing too much espgéwmlthe NGC 7541 galaxy.

But the most promising work would be the explamatbthe disparity of the gravitational constant
measurements. Indeed, the gravitational modelisfdibicument is predicting that the same
measurement db, done in two different places, will give complstéliifferent values, and that this
difference can be actually calculated by the model.

Today this work consists first of getting the calénformation of the locations of two
measurements @, yielding different values. Thereafter, this wovkl be the evaluation of the
presence of mountains in the neighbourhood of thassions. This will enable to calculate the
theoretical ratio, and finally compare it to theasered one.
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May we hope to solve someday the issue of the measunt ofG ? Will we find a unique
theoretical explanation for actual gravitation ssand physical mysteries ?

Topic Distance | Newton’s law | Result Next steps
range modification
Dark matter, >100kpc 1st Excellent Finding the exact ra®/G from experimental data
velocities of the Groups of
galaxies galaxies.
Dark matter, 1-100kpc 2nd Very Getting the dust and gas profiles for galaxiesyels
galaxies speed A galaxy. encouraging. as their speed and density profiles. Execute the
profiles algorithm on them.
Tully-Ficher 1-100kpc 2nd Encouraging Getting the density profiles anddbst and gas
relation A galaxy profiles for the galaxies used in [11]. Conclusisn
then immediate.
Sideral gravity 1 kpc. 1 Very More precise calculations.
encouraging Finding and using the exaky, / L ratio.
Pioneer 10-70AU 1t and 2¢ Almost Getting precise experimental data for x <Al0.
anomaly excellent Rewrite the program with the exact extinction
equations.
Saturn flyby 9.6-10.5AU 1 Interesting Experimental data is needed.
Ephemerides 1-70AU 18! Bad result for| Obtaining exact accuracy of ephemerides for the fou
Solar system. the four inner | inner planets. Execute precise calculations. Esitima
planets. of the compensating effect. Correction of the
“following geodesic” principle in the Riemannian
metric context.
Ephemerides: 1-5AU 2nd Encouraging.| Experimental data. Calculation oésfimation of the
“missing Main belt of total mass of the “missing” asteroids.
asteroid solar system.
mystery”
Disparities of G 10000km. 2ne Very More precise experimental data. Sped@ic
measurements encouraging measurements.
PPN formalism All ranges - Excellent -
Sagnac effect Laboratory - Excellent Sagnac effect is a directsemuence of postulate 1

Table 16: Results of the gravitational model ofttiree elements theory
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APPENDIX 1 CALCULATION OF GH' CONSTANT

Resolution of the third degree equation for Gh':

ay*3 + by2+ cy +d =0
a = 3/(2/xs)lc

b=-1

c=0

d=Gh

A =Dbl/a

B =c/a

C=dla

P=B-A%3
Q = (A/27)(2A2 - 9B) + C:

R = Q2+ (4/27)P3
R is negative, see below.

u = (-Q/2 + (il2Y/(-R))*(1/3)
V = (-Q/2 - (il2V/(-R))**(1/3)

j=-1/2 + V3/2:
y=j2u+jv-A/3 This is the closest value frof@h value, from the 3 real roots.

Gh' = y2

Numerical application:

a =0,11830385 10**(-13)
b=-1
b=0
d =0,13271244 10**21
=-0,84528101 10**14
B=0
C=0,11217930 10**35
=-0,23816666 10**28
Q =-0,44737269 10**41
R =-0,10037193 10**76 R is negative
u = 0,281760 10**14 + 0,665113 10**10 i
v = 0,281760 10**14 - 0,665113 10**10 |
y = 0,115208 10**11

Ghp = 0,13273052 10**21 m3/s
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APPENDIX 2

HHHHHHHHHH
#

# FIRST CALCULATION OF PIONEER ANOMALY

#

# This MAPLE program is calculating and plotting th

# the PIONEER anomaly, using only the first modific

# Newton's law.

#

HHHHHHHHHH

HIHHHH AR R
HHH I Initialisations ###HHH
HIHHHHH AR R

B oo MAPLE --------------
Digits := 50 : # Floating poin
unassign('x’): unassign('y"): unassign('Da’):

# oo Cosmological values -----------
day := 24*3600:

km := 10**3:

AU := 149597870 * km : # Astronomic

Cc := 3 * 10**8:
XS := 1429 * 10**9:

# light
# Distance Sa

HHHHHHHHH
# Calculation of Ghp, the heliocentric gravitationa
# valid outside the solar system.
HHHHHHHHHH
x0:=1*xs: # Thisis the distance from the sun
the
# heliocentric gravitational consta
calculated.
# This value is seen on the curve o
# measured anomaly (experimental cu
# Itis very near to x0 = xs, the d
Saturn
# from the sun, as seen from the ex
curve.

# heliocentric gravitational constant inside the so
Gh := (0.01720209895)**2 * AU**3 / day**2:

aa := 3*sqrt(2/x0)/c:
bb :=-1:

cc =0

dd := Gh:

A := bb/aa:

B := cc/aa:
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PLOTTING FIRST MODIFICATION CURVE

R
#
#
#
e curve of #
ation of #
#
#
R

HHHHH AR
HARH R HHHH
HHHHH AR

#in sec.
#m.
al Unit in m.
speed in m/s.
turn sun in m.

R
| constant #
#
R
at which Gh,

ntis
f the Pioneer
rve).

istance of

perimental

lar system.
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C :=dd/aa:
P :=B - A**2/3:

Q = (A127)*( 2*A**2 - 9*B) + C:

R := evalf(Q**2 + (4/27)*P**3):

U := evalf( root[3](-Q/2 + (I/2)*sqgrt(-R)) ):
V := evalf( root[3](-Q/2 - (I/2)*sqrt(-R)) ):
ji == -(1/2) + I*sqgrt(3)/2:

y3 .= Re(evalf(jj**2*U + jj*V)):

x3 = evalf(y3 - A/3):

Ghp := evalf(x3**2):

HHAHHHH AR R AR AR
# Calculation of Da, the Pioneer anomaly.

HHHHHHHHHH
A := Ghp - Gh:

B := 3*Ghp*sqrt(2*Ghp)/c:

Da := (A - B/sqrt(x)) / x**2:

HHHHHHHH A AR A
# Plotting the theoretical Pioneer anomaly ¢

HHHHHEHHH PR AR AR
X =AU *y:

plot( Da, y=x0/AU..50 );
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# Negative.

HHHHHHHHHHHHHH
#
HARH R HHAHH

HHHHHHHH R
urve #
HHH A
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APPENDIX 3 PLOTTING PIONEER ANOMALY CURVE

HARR B HHHAHH R AR AR AR AR AR HARH R HAHHT

# #
# CALCULATION OF PIONEER ANOMALY #
# #
# This MAPLE program is calculating and plotting th e curve of #
# the PIONEER anomaly. #
# #

HIHHHHH AR R HHHHH AR

HARH R HHHAHH R AR AR AR AR AR HARH R HAHH
HiHHHHHHHHH AR Initialisations ######H#HH HHHHHHHHHHHHHH
HARR B HHHAHH R AR AR AR AR AR HARH R HHHH

Digits := 50 : # Floating poin
unassign('x’): unassign('y'): unassign(‘ar'): unass
unassign('Da’):

s:=1
day := 24*3600:
gram := 10**(-3):

cm = 10**(-2):
km := 10**3:
kpc :=3.08 * 10**19 : # 1 kilo parsec expre

pc := kpc/1000 :
mpc := 10**3 * kpc:

# 1 parsec expres

c :=3*10*8: # light

LY := 365 * 24 * 3600 * c: #1 lighty

AU := 149597870 * km : # Astronomic
G :=6.6742867 * 10**(-11): # Gravit constant m3
Gp:=10*G: # Gravitational constant outsi

rg := 473 * 10**18: # Ray of the
rg_last := 0.9 * 10**(-2) * rg: #

# Distance of last galaxy's contri

Hoommmmmm Solar system values -----------

# heliocentric gravitational constant inside the so
Gh :=(0.01720209895)**2 * AU**3 / day**2:

Mt := 5.97 * 10**24: # Earth

MO :=2 *10**30 : # Sun ma

RO := MO * G/ c**2: # Half Schwarschild

XS := 1429 * 10**9: # Distance Saturn
rho0 := 0.003 * MO / (LY**3): #Matter density near

Hoommmmmmmemeeeeee Kuiper belt values -----------

xkmin := 30 * AU: # Kuiper min distance fro
xkmax := 48 * AU: # Kuiper max distance
xkmean := (xkmin+xkmax)/2: # Kuiper mean distance
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ts precision.
ign(‘an’):

#s.
#in sec.

# kg.

#m.

#m.
ssed in meter.
sed in meter.

#m.
speed in m/s.
ear in meter.
al Unit in m.
kg(-1) s(-2).
de any galaxy.
galaxy in m.
Fitted value.
bution. in m.

lar system:

mass in Kg.
ss in Kg.

ray for SUN.
sunin m.
solar system.

m the sun. m.
from the sun.
from the sun.
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thetak := Pi*20/180: # Kuiper thi

xkthi := xkmean * thetak: # Kuip

Mk := 0.3 * Mt: # Kuiper

value.

VK := Pi*(xkmax**2 - xkmin**2) * xkthi: # Kuiper be
rhok := evalf(Mk/VKk): # Kuiper belt matter d
#xKuiper := xkmin + xkmax: # If only Kuiper belt
xKuiper := 114*AU: # Fitted value for taking

# the scattered disk and

# transneptunian objects.

HHAHHHH AR AR R AR AR AR
HHHHHHHH###H Calculation of Lk, the symmetric contri
T R R R T R R

Hoommmmmmmemeeeeeee Calculation of fmax ----------
Lk_on_Lg_max := (sqrt(xkmax**2 - xkmin**2)/rg_last)
sqrt(rhok/rho0):

H oo - Calculation of Lk -----------

# Here is the final equation of the symmetric contr

# from the Kuiper belt:

Lk _on_Lg:=Lk on_Lg_max * (2/Pi) * invfunc[tan]((2

x:=x0: #LkO_on_Lg: value of Lk where Gh is
LkO_on_Lg:=Lk on_Lg:
unassign('x’):

HHAHHHH AR R AR AR AR
# Calculation of Ghp, the heliocentric gravitationa
# valid outside the solar system.
HHAHHHH AR R AR AR R
X0 := 1 * xs: # This is the distance from the sun a

# heliocentric gravitational constant

# This value is seen on the curve of

# measured anomaly (experimental curv

# It is very near to x0 = xs, the dis

# from the sun, as seen from the expe

# The best value for x0 is x0 = 0.95

# (in place of X0 = xs). This last va

# value of 8.25 10**(-10) m/s2.

# - Used method: iteration --------------------
Ghpmin := Gh/100:
Ghpmax := 100*Gh:
Ghp := Ghpmin:
for i from 1 to 100 do
unassign('x’): unassign('y'): unassign('ar'): una
unassign('Da’):

Rp := Ghp/c**2:
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ckness angle.
er thickness.
belt mass

It volume m3.
ensity kg/m3.
xKuiper=81 AU
into account
other

HHHHH
bution ###H##
HHHHHHH

ibution coming

/Pi) *
xKuiper/x):
correct value

HHHGHHHH R
| constant #

#
HHHBHHHHH AR
t which Gh the

is calculated.
the Pioneer

e).

tance of Saturn
rimental curve.
* XS,

lue yields the

ssign(‘an’):
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L1:=1+Lk on_Lg+ (1+LkO on_Lg) *sqrt(8*Rp/
L2:=1+Lk on_Lg:
C0S2:= 4*L1*L2/(L1+L2)**2: # Square of relativi
tg:=sqrt( 1/cos2 - 1) :  # Slope of space insi
arr ;= - ¢**2 * diff(tg,x) * tg * (1 - tg**2)**(

# Newton
ann := Gh / x**2: # Classical "Newton's

X := X0:

if(evalf(arr) > evalf(ann)) then
Ghpmax := Ghp:
Ghp := (Ghpmin+Ghp)/2:
else
Ghpmin := Ghp:
Ghp := (Ghpmax+Ghp)/2:
end if:
end do:
Ghp_iter := Ghp:

GhpApprox:
Ghp_3emedegree:

Ghp_iter: # Finally this is the most

HHHHHHHHHH
# Calculation the theoretical Pioneer anomaly f
HHHHHHHHHH

unassign('x’): unassign('y'): unassign(‘ar'): unass
unassign('Da’):

Rp := Ghp/c**2:
L1:=1+Lk on_Lg+ (1+LkO on_Lg) * sqrt(8*Rp/x)
L2:=1+Lk on_Lg:
cos2:= 4*L1*L2/(L1+L2)**2: # Square of relativi
tg:=sqrt( 1/cos2- 1) :  # Slope of space insi
ar := - c**2 * diff(tg,x) * tg * (1 - tg**2)**(-3/
# Our "Newton's
an := Gh/x**2 : # Classical "Newton's

Da :=ar - an: # Theoretical PI

HHAHHHH AR R AR
# Plotting the theoretical Pioneer anomaly ¢

HHAHHHH AR R AR R AR

# Plotting Da
X :=AU*y:
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X):

stic operator.
de space-time.
-3/2):
corrected law.
acceleration”.

precise value.

HHHHH R
unction #
HHHHH R

ign(‘an’):

stic operator.
de space-time.
2) .
acceleration”.
acceleration”.

ONEER anomaly.
HHAHHHH AR

urve #
HEH
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plot( Da, y=x0/AU..50 );
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APPENDIX 4 APPROXIMATING WITH SYMMETRIC
CONTRIBUTIONS

As it has been showed above, the Kuiper’s belt thegtiken into account in the calculation of the
relativistic operator. This contribution, as usweil| be considered as being the sum of its symimetr
and asymmetric parts. Let’s remind that the symimetntribution is named L2, and the
asymmetric is L1-L2, where L1 is the space-timeodeftion value coming from the left, and L2 the
space-time deformation value coming from the rigyinthis notation it is supposed L1>L2 because
the pin pointed mass gravitational object is suppddecated on the left. We suppose that the probe
is moving from the O point (the Earth) along the &xs, on the right.

It will be supposed that the probe is located @netliptic plane before the Kuiper belt.

We will try to prove that, in this case, the symrngetontributions coming from the Kuiper belt are
equal to the contributions coming from the right.

In other words, that is to say that L1>L2. Therefdhe contributions coming from the left are only
driving the (remaining) asymmetric part of the Kerelt contribution (L1-L2). But this
asymmetric contribution is driving only the grawitaal attractive force coming from this left part
of the Kuiper belt.

For this proof, we just redo the calculation ofsttiocument, but taking into account the beginning
of the Kuiper belt. The resulting equation is tbkdwing.

Lk on_Lg_max = V[rk2- rk'2)/rg_last V[pk/pO]

This equation above is equation (18). rk is therndistance of the Kuiper belt, and rk’ is the
beginning distance of the Kuiper belt.

If we apply this equation with x different from R lpeing the distance of the probe from the sun), we
get:

L1
L2

V[(x+rk)2- (x+rk")?]/rg_last V[pk/p0]
V[(x-rk)2- (x-rk)?)/rg_last V[pk/p0]

Where L1 is the contribution of the Kuiper belt damfrom the left, and L2 coming from the right.
Now if we compare L1 with L2 we get:

L1/L2 = V[(A + Bx) / (A - BX)]

with A = rk2- rk'2, and B = 2(rk- rk’)

Now if we plot this curve we get the following rétsu

xpk := 30; # Beginning of the Kuiper belt, in AU.
xk :=48; # Ending of the Kuiper belt, in AU.

A = xk**2 - xpk**2;

B =2 * (xk - xpk);

L1 on L2 :=sqrt((A + B*x) / (A - B*x)); # Regetive value of L1 from L2.
plot( L1_on_L2, x=0..xpk ); # Plotg until the beginning of the belt.
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28
26
24

22

It is noticed that L1 is always greater than L2nEle we conclude that the symmetric contribution is
always equal to L2. The asymmetric contributionl2lis yielding only a gravitational attractive
effect. It is noticed also that L1/L2 is weakernt8.

It is supposed that the probe is located on thptecplane before the Kuiper belt.

It has been proven that, in this case, the symmetmtribution coming from the Kuiper belt is equal
to the contribution coming from the right.
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APPENDIX 5 CALCULATION OF THE OORT CLOUD
CONTRIBUTION

This appendix will try to show that the OORT claigg¢gmmetric) contribution is very weak in front
the galactic symmetric contribution.

The following equation will be used as usual.

Lk on_Lg_max = V[rk2-rk'?)/rg_last V[pk/pO] |

Here are the MAPLE lines of code which must be dddehe MAPLE program of appendix 3, and
which are calculating this contribution ratio foetOORT cloud.

xomin := 3000 * AU: # OORT min distance from the sun. m.
xomax := 5000 * AU: # OORT max distance from the sun.
Mo :=5* Mt: # OORT cloud mass vake.
Vo := (4/3) * Pi * (xomax**3 - xomin**3): # OORT cloud volume. m3.
rhoo := evalf(Mo/Vo): # OORT cloud matter density. kg/m3.

Lo_on_Lg_max := (sgrt(xomax**2 - xomin**2)/rg_last)sqgrt(rhoo/rho0):
evalf(Lo_on_Lg_max);

And here is the result:
Loort/Lg = 2.5 10**(-4)
Let’s remind the ratio which is used in the caltiola of the relativistic operator :
Lkuiper / (Lg + Loort)
Now using the estimation above we can write:
Lkuiper / (Lg + Loort) O Lkuiper / Lg
And the error of this approximation is roughly 032

It is this approximation which has been used ia ttaicument, noticeably in the program of
appendix 3.
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APPENDIX 6 EARTH FLYBY ANOMALIES

:515##################################################
z CALCULATION OF EARTH FLY BY ANOMALY
zThis MAPLE program is calculating the Earth flyby
z##################################################

HIHHHHH AR R
HiHHHHHHHHH AR Initialisations #H####H#HH
HARH BB HHHAHHH AR AR AR AR AR

Digits := 50 : # Floating poin
unassign('x’): unassign('y'): unassign(‘ar'): unass
unassign('Da’):

# oo Cosmological values -----------
km := 10**3:

Mkm := 1000 * km:

c :=3*10*8: # light

AU := 149597870 * km : # Astronomic
G :=6.6742867 * 10**(-11): # Gravit constant m3
H oo Solar system values -----------

Mt := 5.97 * 10**24 : # Earth

Gt =G * Mt

rt:= 6378 * km:

Xl := 384403 * km: # Moon Ea

xsat := 25000 * km: # Half great axis of artificia

xGall :=rt + 956 * km: # Min altitude of Galileo
v_inf_Gall := 8949: # Galileo |
xGalll :=rt + 303 * km:

v_inf_Galll := 8877:

XNEAR :=rt + 532 * km:
v_inf_NEAR := 6851:

xCass :=rt+ 1172 * km:

v_inf _Cass := 16010:

XRosl :=rt + 1954 * km:

v_inf _Rosl := 3863:

xMess :=rt + 2336 * km:
v_inf_Mess := 4056:

x0 := 16200 * km:
# Fitted value for Galilleo |

Frédéric LASSIAILLEDO 2011 Page 73

18/11/2013

HHAHHHH AR
#
#
#
anomaly. #
#
HHAHHHH AR

HHHHH AR
HHHHH AR
HARH A

ts precision.
ign(‘an’):

speed in m/s.
al Unitin m.

kg(-1) s(-2).
mass in Kg.
# Earth ray.
rth distance.

| satellite.

| near Earth.
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HHAHHHH AR R AR AR
# Calculation of Gtp, the Earth gravitational const

# valid outside the Earth location.

HHAHHHH AR R AR AR AR
# - Calculation of Gtp, with 3rd method: iterat

Gtpmin := Gt/100:

Gtpmax := 100*Gt:

Gtp := Gtpmin:

for i from 1 to 100 do
unassign('x’): unassign('y'): unassign('ar'): una
unassign('Da’):

Rp := Gtp/c**2:
L1 :=1 + sqrt(8*Rp/x):
L2 :=1:
C0S2:= 4*L1*L2/(L1+L2)**2: # Square of relativi
tg:=sqrt( 1/cos2 - 1) :  # Slope of space insi
arr ;= - ¢**2 * diff(tg,x) * tg * (1 - tg**2)**(

# Newton
ann ;= Gt/ x**2: # Classical "Newton's
X = Xx0:

if(evalf(arr) > evalf(ann)) then

Gtpmax = Gtp:
Gtp := (Gtpmin+Gtp)/2:
else
Gtpmin := Gtp:
Gtp = (Gtpmax+Gtp)/2:
end if:
end do:

T R T R T R R
# Calculation of the corrected gravitational
T R T R T R R

unassign('x’): unassign('y'): unassign(‘ar'): unass
unassign('Da’):

Rp = Gtp/c**2:
L1 :=1 + sqgrt(8*Rp/x):
L2 :=1:
c0s2:= 4*L1*L2/(L1+L2)**2: # Square of relativist
tg:=sqrt( 1/cos2 - 1) :  # Slope of space inside
ar := - c**2 * diff(tg,x) * tg * (1 - tg**2)**(-3/
# Our "Newton's acce
an = Gt/x**2 : # Classical "Newton's ac
HHHHHHHHHH
# Added velocity at perigee
HHAHHHH AR R AR R AR
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HHHHHIHHHHHHHHH]
ant #

#
HHHHHIHHHHHHHHHH]
ion -------- #

ssign(‘an’):

stic operator.
de space-time.
-3/2):
corrected law.
acceleration”.

HHHHHHH
force #
HHHHHHH A

ign(‘an’):

ic operator.
space-time.
2) .
leration”.
celeration".

HARHH AT
#
HHHHHHHHHHHHH
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print("----------- Galilleo | ----------- ")

DvReal := 0.0025;

xPerigee := xGall:

v_inf:=v_inf_Gall:

unassign('x’):

x_inf:=1*AU:

Epn := - evalf(Int( -an, x = x_inf.. xPerigee, digi
Epr := - evalf(Int( -ar, x = x_inf.. xPerigee, digi
vn = sqrt(v_inf**2 - 2*Epn):

vr ;= sqrt(v_inf**2 - 2*Epr):

Dv:=vr-vn;

X := xPerigee:

Dv2 := (Gt**(3/2) / (c*vn*x)) * sqrt(2) * (3/sqrt(x
9* Gt**(3/2)/(vn**2*c*x*x0)) :
evalf((Dv-Dv2)/Dv);

TR R R R R R R R
print("'----------- Galilleo Il ----------- );
DvReal :=-0.002;

xPerigee := xGalll:
v_inf:=v_inf_Galll:

unassign('x’):

x_inf:=1*AU:

Epn := - evalf(Int( -an, x = x_inf.. xPerigee, digi
Epr := - evalf(Int( -ar, x = x_inf.. xPerigee, digi
vn ;= sqrt(v_inf**2 - 2*Epn):

vr ;= sqrt(v_inf**2 - 2*Epr):

Dv:i=vr-vn;

X := xPerigee:

Dv2 = (Gt**(3/2) / (c * vn * X)) * sqrt(2) * (3/sq
2/sqrt(x) - 9* Gt**(3/2)/(vn**2 * ¢ * X * X0)) :
evalf((Dv-Dv2)/Dv);

HHHHHHHHHH
print("----------- NEAR ----------- ");

DvReal := 0.0072;

xPerigee := XNEAR:

v_inf:=v_inf NEAR:

unassign('x’):

x_inf:=1*AU:

Epn := - evalf(Int( -an, x = x_inf.. xPerigee, digi
Epr := - evalf(Int( -ar, x = x_inf.. xPerigee, digi
vn = sqrt(v_inf**2 - 2*Epn):

vr ;= sqrt(v_inf**2 - 2*Epr):

Dv:=vr-vn;

X := XPerigee:
Dv2 = (Gt**(3/2) / (c * vn * X)) * sqrt(2) * (3/sq
2/sqrt(x) - 9* Gt**(3/2)/(vn**2 * ¢ * x * xX0)) :
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ts=14)):
ts=14)):

0) - 2/sqgrt(x) -

HHHHH AR

ts=14)):
ts=14)):

rt(x0) -

HARHH A

ts=14)):
ts=14)):

rt(x0) -
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evalf((Dv-Dv2)/Dv);

HHAHHHH AR AR AR R AR
print("----------- Cassini ----------- ");

DvReal :=-0.0017,;

xPerigee := xCass:

v_inf:=v_inf_Cass:

unassign('x’):

x_inf:=1*AU:

Epn := - evalf(Int( -an, x = x_inf.. xPerigee, digi
Epr := - evalf(Int( -ar, x = x_inf.. xPerigee, digi
vn = sqrt(v_inf**2 - 2*Epn):

vr ;= sqrt(v_inf**2 - 2*Epr):

Dv:=vr-vn;

X := xPerigee:

Dv2 := (Gt**(3/2) / (c * vn * X)) * sqrt(2) * (3/sq
2/sqrt(x) - 9* Gt**(3/2)/(vn**2 * ¢ * x * xX0)) :
evalf((Dv-Dv2)/Dv);

TR R R R R R R R
print("'----------- Rosetta | ----------- ");

DvReal := 0.00067,;

xPerigee := xRosl:

v_inf:=v_inf Rosl:

unassign('x’):

x_inf:=1*AU:

Epn := - evalf(Int( -an, x = x_inf.. xPerigee, digi
Epr := - evalf(Int( -ar, x = x_inf.. xPerigee, digi
vn ;= sqrt(v_inf**2 - 2*Epn):

vr ;= sqrt(v_inf**2 - 2*Epr):

Dv:i=vr-vn;

X := xPerigee:

Dv2 = (Gt**(3/2) / (c * vn * X)) * sqrt(2) * (3/sq
2/sqrt(x) - 9* Gt**(3/2)/(vn**2 * ¢ * X * X0)) :
evalf((Dv-Dv2)/Dv);

HHHHHHHHHH
print("----------- Messenger ----------- ");

DvReal := 0.000008;

xPerigee := xMess:

v_inf:=v_inf_Mess:

unassign('x’):

x_inf:=1*AU:

Epn := - evalf(Int( -an, x = x_inf.. xPerigee, digi
Epr := - evalf(Int( -ar, x = x_inf.. xPerigee, digi
vn = sqrt(v_inf**2 - 2*Epn):

vr ;= sqrt(v_inf**2 - 2*Epr):

Dv:=vr-vn;
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HHHHH AR

ts=14)):
ts=14)):

rt(x0) -

HHHHH AR

ts=14)):
ts=14)):

rt(x0) -

HARHH A

ts=14)):
ts=14)):
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X := xPerigee:

Dv2 = (Gt**(3/2) / (c * vn * X)) * sqrt(2) * (3/sq rt(x0) -
2/sqrt(x) - 9* Gt**(3/2)/(vn**2 * ¢ * x * xX0)) :

evalf((Dv-Dv2)/Dv);

unassign('x’) :

Dv2 = (Gt**(3/2) / (c * vn * X)) * sqrt(2) * (3/sq rt(x0) -
2/sqrt(x) - 9*Gt**(3/2)/(vn**2 * ¢ * x * X0)) :

plot(Dv2, x=rt..2*x0) ;
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APPENDIX 7 SATURN FLYBY ANOMALY

TR T T S T T R T T T
z CALCULATION OF PIONEER SATURN FLYBY ANOMA
zThis MAPLE program is calculating and plotting th

# the anomaly of Saturn flyby during PIONEER 11 tra
z##################################################

HARH BB HHHAHH R AR AR AR AR AR
HitHHHHHHHHH AR Initialisations #HHHH#A##HHH
HARH R HHHAHH R AR AR AR AR AR

Digits := 50 : # Floating poin
unassign('x’): unassign('y'): unassign('ar'): unass
unassign(‘Da’):

s:=1
day := 24*3600:
gram := 10**(-3):

cm = 10**(-2):

km := 10**3:

eps = 10**(-40):

H oo Cosmological values -----------
kpc :=3.08 * 10**19 : # 1 kilo parsec expre
pc := kpc/1000 : # 1 parsec expres
mpc := 10**3 * kpc:

c :=3*10*8: # light

AL := 365 * 24 * 3600 * c: # lyearli

AU := 149597870 * km : # Astronomic
G :=6.6742867 * 10**(-11): # Gravit constant m3
Gp:=10*G: # Gravitational constant outsi
rg := 473 * 10**18: # Ray of the

rg_last := 3.5 * 10**(-3) * 473 * 10**18: #
# Distance of last galaxy's contri

Hoommmmmmeeeees Solar system values -----------
# heliocentric gravitational constant inside the so
Gh :=(0.01720209895)**2 * AU**3 / day**2:

Mt := 5.97 * 10**24: # Earth

xkmin := 30 * AU: # Kuiper min distance fro
xkmax := 48 * AU: # Kuiper max distance
xkmean := (xkmin+xkmax)/2: # Kuiper mean distance
thetak := Pi*20/180: # Kuiper thi

xkthi := xkmean * thetak: # Kuip

Mk := (Mt/10): # Kuiper belt matt
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HHHHHHHHHH ]
#
LY #
#
e curve of #
vel. #
#
R ]

HARH R HHHH
HHHHHHHHHHHHHH
HARH R HHHH

ts precision.
ign(‘an’):

#s.
#in sec.
# kg.
#m.
#m.

ssed in meter.
sed in meter.
#m.

speed in m/s.
ght in meter.
al Unit in m.
kg(-1) s(-2).
de any galaxy.
galaxy in m.
Fitted value.
bution. in m.

lar system.

mass in Kg.

m the sun. m.
from the sun.
from the sun.
ckness angle.
er thickness.

er max value.
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VK := Pi*(xkmax**2 - xkmin**2) * xkthi: # Kuiper be
MO :=2 *10**30 : # Su

Ms := 2 * 10**27 . # Satur

Rs := Ms*G/c**2: # Schwartzchild ra

Gs = Ms*G: # Gravitational constan
XS = 1429 * 10**9: # Distance Sat
rs ;= 60268 * km: #R

Is :=rs + 22000 * km: # Dist Saturn center to Pi
RO :=MO * G/ c**2: # Half Schwarschild
rho0 := 0.003 * MO / (AL**3): #Matter density near
rhok := evalf(Mk/VK): # Kuiper belt matter d

H oo Luminous point's values -------
mp = me: # Luminous point's mass = elect
ep :=mp * c**2: # Luminous point en
dk := (mp/rhok)**(1/3): # Dist between 2 lum pts i
dg := (mp/rhog)**(1/3): # Dist between 2 lum pts i
du := (mp/rhou)**(1/3): # Dist between 2 lum pts

TR R R R R R R
#Hu###HH###H Calculation of Lk, the symmetric contri
HHHHHHHHHH

H oo Calculation of fmax ----------
Si_So :=sgrt(Gp/G) - 1. # Intra gal/extra-galactic
r :=rho0 * Si_So**(-2): # Square of extragalactic

# proportional to the square of e

# lights contributions. Linked t

#Un

Lu_on_Lg :=sqgrt(r/rho0): # Extra/intra galactic
Lk_on_Lg_max := (xkmax/rg_last) * sqrt(rhok/rho0):

Hoommmmmmmemeeeeeee Calculation of LK ------------
xKuiper := 125 * AU: # Fitted value. Greater than
Lk _on_Lg:=Lk on_Lg_max * invfunc[tan]((2/Pi) * xK

x:=x0: #LkO_on_Lg : value of Lk where Gh is
LkO _on_Lg:=Lk on_Lg:
unassign('x’):

HHHHHHHHHH
# Calculation of Ghp, the heliocentric gravitationa
# valid outside the solar system.
HHHHHHHHHH
x0 :=1 * xs: # This is the distance from the sun a

# heliocentric gravitational constant

# This value is seen on the curve of

# measured anomaly (experimental curv

# It is very near to x0 = xs, the dis

# from the sun, as seen from the expe

# The best value for x0 is x0 = 0.95

Frédéric LASSIAILLEDO 2011 Page 79

18/11/2013

It volume m3.
n mass in Kg.
n mass in Kg.
y for Saturn.
t for Saturn.
urn sun in m.
ay of Saturn.
oneer trajec.
ray for SUN.
solar system.
ensity kg/m3.

ron's mass !?
ergy at rest.
n Kuiper belt.
n the galaxy.
in universe.

HHHHHH
bution ###H##H
HHHHHHHAHH

contributions
contributions.
xtra-galactic
o rho0 value.
it : Kg m(-3).
contributions.

xkmax = 48 AU.
uiper/x)

| (Pi/2):
correct value

R
| constant #

#
R
t which Gh the

is calculated.
the Pioneer

e).

tance of Saturn
rimental curve.
* XS,
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# (in place of X0 = xs). This last va
# value of 8.25 10**(-10) m/s2.

Ghpmin := Gh/100:

Ghpmax := 100*Gh:

Ghp := Ghpmin:

for i from 1 to 100 do
unassign('x’): unassign('y"): unassign('z’):
unassign(‘ar’): unassign(‘an’): unassign('Da’):

# oo Sun attraction force ----------

Rp := Ghp/c**2:

Lu0:=1+Lu on_Lg+LkO on_Lg:

L1:=1+Lu on_Lg+Lk on Lg+ LuO *sqrt(8*Rp/
L2:=1+Lu on_Lg+Lk on_Lg:

€c0s2:= 4*L.1*L.2/(L1+L2)**2: # Square of relativi
tg:=sqrt( 1/cos2 - 1) :  # Slope of space insi

arr := - c**2 * diff(tg,x) * tg * (1 - tg**2)**(

ann := Gh/x**2: # Newton's
Hommmmmm e Comparison of acceleration forc
X = X0: # Comparing the forces for th

if(evalf(arr) > evalf(ann)) then

Ghpmax := Ghp:
Ghp := (Ghpmin+Ghp)/2:
else
Ghpmin := Ghp:
Ghp := (Ghpmax+Ghp)/2:
end if:
end do:

T R T R T R R
# Calculation of Ghs, the Saturn gravitational cons
# valid outside the solar system.
T R T R T T T R R
X0s := 2*AU: # Fitted value, in order to
# Pioneer

Gspmin := Gs/100:
Gspmax := 100*Gs:
Gsp := Gspmin:
for i from 1 to 100 do

unassign('x’): unassign('y"): unassign('z'):

unassign(‘ar’): unassign(‘an’): unassign('Da’):

Rs := Gsp/c**2:

L1ls :=1 + sqrt(8*Rs/x):
L2s:=1:
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lue yields the

stic operator.
de space-time.
-3/2):

acceleration.

es ---—--- #
e X0 distance.

HHAHHHH R
tant #

#
HHAHHHHH T
get a correct
anomaly curve.
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cos2:= 4*L1s*L2s/(L1s+L2s)**2: # Square of rela
operator.

tg:=sqrt( 1/cos2 - 1) :  # Slope of space insi

arr := - c**2 * diff(tg,x) * tg * (1 - tg**2)**(

ann = Gs/x**2: # Newton's

#oommmmmmmeeee Comparison of acceleration forc
# Comparing the forces for t

if(evalf(arr) > evalf(ann)) then

Gspmax = Gsp:
Gsp = (Gspmin+Gsp)/2:
else
Gspmin := Gsp:
Gsp = (Gspmax+Gsp)/2:
end if:
end do:

HHAHHHH AR R R AR AR
# Calculation the theoretical Pioneer anomaly f
HHAHHHH AR AR AR AR

unassign('x’): unassign('y"): unassign('z’):
unassign(‘ar’): unassign(‘an’): unassign('Da’):

#H oo Sun attraction force ------------

Rp := Ghp/c**2:

LuO:=1+Lu on_Lg+LkO on_Lg:
L1:=1+Lu_on_Lg+ Lk on_Lg + LuO * sqrt(8*Rp/x):
L2:=1+Lu_on_Lg+ Lk on_Lg:

cos2:= 4*L1*L2/(L1+L2)**2: # Square of relativist
tg:=sqrt( 1/cos2 - 1) :  # Slope of space inside

arr ;= - ¢c**2 * diff(tg,x) * tg * (1 - tg**2)**(-3

# oo Saturn attraction force ---------

Rsp := Gsp/c**2:

L1s := 1 + sqrt(8*Rsply):

L2s = 1:

cos2:= 4*L1s*L2s/(L1s+L2s)**2:  # Square of rel
tg:=sqrt(l/cos2 - 1) :  # Slope of space inside
arrs := - c**2 * diff(tg,y) * tg * (1 - tg**2)**(-

y = sqrt((x-xs)**2 + Is**2):

COSS = (Xx-xs)ly:

Hoommmmmmmeeeee- Total attraction forces ---------
arr ;= arr + coss*arrs: # Corrected a
ann := Gh/x**2 + coss*Gs/y**2 : # Newton's a

# oo Comparison of acceleration forces
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tivistic

de space-time.

-3/2):
acceleration.

es ---—--- #

he x0 distance.

HHHHH AR

unction #

HHHHH AR

ic operator.
space-time.
12):

at operator.
space-time.
3/2):

cceleration.
cceleration.
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Da := arr - ann: # Theoretical PI ONEER anomaly.

TR R A R R R R R R R TR
# Plotting the theoretical Pioneer anomaly ¢ urve #
HHHHHHHHHH HHHHHHHHH

# Plotting Da

X:=AU*t

plot( Da, t=(0.9998)*xs/AU..(1.0002)*xs/AU );
plot( Da, t=9.8..30 );
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APPENDIX 8 PERIHELION ADVANCE

HHHHHHHHHH
#

# CALCULATION OF PERIHELION ADVANCE

#

# This MAPLE program is calculating the perihelion

# some planets in the solar system, in the context

# elements theory.

#

TR R R R R R R R

HHHHHHHHHHHHHH AR AR AR
HHH I Initialisations ###HHH
HARR B HHHAHH R AR AR AR AR AR

B oo MAPLE --------------
restart:

Digits := 50 : # Floating poin
Digint := 12:

unassign('x’): unassign('y'): unassign(‘ar'): unass
unassign('Da’):

s:==1
day := 24*3600:
gram := 10**(-3):

cm = 10**(-2):

km := 10**3:

kpc :=3.08 * 10**19 : # 1 kilo parsec expre
pc := kpc/1000 : # 1 parsec expres
mpc := 10**3 * kpc:

c :=3*10*8: # light

AL := 365 * 24 * 3600 * c: # lyearli

AU := 149597870 * km : # Astronomic
G :=6.6742867 * 10**(-11): # Gravit constant m3
Gp:=10*G: # Gravitational constant outsi
rg := 473 * 10**18: # Ray of the

rg_last := 0.6 * 10**(-2) * 473 * 10**18: #
# Distance of last galaxy's contri

Hoommmmmm Solar system values -----------
Mt := 5.97 * 10**24. # Earth

MO :=2 *10**30 : # Sun ma
RO :=MO * G/ c**2: # Half Schwarschild
XS := 1429 * 10**9: # Distance Saturn

rho0 := 0.003 * MO / (AL**3): #Matter density near
# Heliocentric gravitational constant inside the so
Gh :=(0.01720209895)**2 * AU**3 / day**2:

18/11/2013

HHHHHHHHHH ]
#
#
#
advance for #
of the three #
#
#
R ]

HHHHHHHHHHHHHH
HARH R HHHH
HARH R HHHH

ts precision.

ign(‘an’):

#s.
#in sec.

# kg.

#m.

#m.
ssed in meter.
sed in meter.

#m.
speed in m/s.
ght in meter.
al Unit in m.
kg(-1) s(-2).
de any galaxy.
galaxy in m.
Fitted value.
bution. in m.

mass in Kg.
ss in Kg.

ray for SUN.
sun in m.
solar system.
lar system:
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xkmin := 30 * AU: # Kuiper min distance fro
xkmax := 48 * AU: # Kuiper max distance
xkmean := (xkmin+xkmax)/2: # Kuiper mean distance
thetak := Pi*20/180: # Kuiper thi

xkthi := xkmean * thetak: # Kuip

xKuiper := 125 * AU: # Fitted value. Greater than

Mk := 0.3 * Mt: # Kuiper

value.

VK := Pi*(xkmax**2 - xkmin**2) * xkthi: # Kuiper be
rhok := evalf(Mk/VK): # Kuiper belt matter d

HHAHHHH AR R AR AR
HHHHHHHH###H Calculation of Lk, the symmetric contri
T R R R T R R

H oo Calculation of fmax ----------
Si_So :=sgrt(Gp/G) - 1. # Intra gal/extra-galactic
r :=rho0 * Si_So**(-2): # Square of extragalactic

# proportional to the square of e

# lights contributions. Linked t

#Un

Lu_on_Lg :=sqgrt(r/rho0): # Extra/intra galactic
Lk_on_Lg_max := (xkmax/rg_last) * sqrt(rhok/rho0):

Hoommmmmmmemeeeeeee Calculation of LK ------------
Lk _on_Lg := Lk on_Lg_max * invfunc[tan]((2/Pi) * xK

x:=x0: #LkO_on_Lg: value of Lk where Gh is
LkO_on_Lg:=Lk on_Lg:
unassign('x’):

HHAHHHH AR R AR AR R
# Calculation of Ghp, the heliocentric gravitationa
# valid outside the solar system.
HHHHHHHHHH
X0 := 1 * xs: # This is the distance from the sun a

# heliocentric gravitational constant

# This value is seen on the curve of

# measured anomaly (experimental curv

# It is very near to x0 = xs, the dis

# from the sun, as seen from the expe

# The best value for x0 is x0 = 0.95

# (in place of X0 = xs). This last va

# value of 8.25 10**(-10) m/s2.

#----- 3rd method: iteration ---------------------
Ghpmin := Gh/100:
Ghpmax := 100*Gh:
Ghp := Ghpmin:
for i from 1 to 100 do
unassign('x’): unassign('y'): unassign('ar'): una
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m the sun. m.
from the sun.
from the sun.
ckness angle.
er thickness.
xkmax = 48 AU.
belt mass

It volume m3.
ensity kg/m3.

HHHHH
bution ###H##
HHHHHHH

contributions
contributions.
xtra-galactic
o rho0 value.
it : Kg m(-3).
contributions.

uiper/x)
! (Pi/2):
correct value

HHHBHHHHH AR
| constant #

#
R
t which Gh the

is calculated.
the Pioneer

e).

tance of Saturn
rimental curve.
* XS,

lue yields the

ssign(‘an’):
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unassign(‘Da’):

Rp := Ghp/c**2:
L1:=1+Lu on_Lg+Lk on_Lg

+(1+Lu on Lg+LkO on_Lg)*
L2:=1+Lu_on_Lg+Lk on_Lg:
C0S2:= 4*L1*L2/(L1+L2)**2: # Square of relativi
tg:=sqrt( 1/cos2 - 1) : # Slope of space insi
arr := - c**2 * diff(tg,x) * tg * (1 - tg**2)**(

# Newton

ann := Gh / x**2 : # Classical "Newton's
X := X0:

if(evalf(arr) > evalf(ann)) then

Ghpmax := Ghp:
Ghp := (Ghpmin+Ghp)/2:
else
Ghpmin := Ghp:
Ghp := (Ghpmax+Ghp)/2:
end if:
end do:

HARH B HHHAHH R AR AR AR AR AR

# Calculation of three elements perihelion a

HIHHH R R R

PerihelionCalcul := proc( planet, w, v )
local u, M, a0, al, a2, a3, a4, NumRelat, k, Mp,
d4, d5, d6, x, Num3elt, AdvRelat, AdvRelatA
DeltaArcC:

u = (v+w)/2 + (1/2)*(v-w)*cos(psi):

HHHHHHHH### EXplanation of series calculations

# For relativity :

#restart: unassign('x’): unassign('u’):

#du_dphi_2 := (v+w)*(1-2*M*Vv)*(1-2*M*wW)/(2*M)
2*M*u)*(v+w- 2*M*(VF*2+viw+w*r*2)+2*M*u**2)/(2*M):

#poly2 := (u-w)*(v-u):

#PolyRes := du_dphi_2 / poly2 :

#Res = PolyRes**(-1/2):

#series(Res, u, 6); # and NumRelat = this “s

#

# For three elt version :

# restart: unassign('x’): unassign('u’):

# M = Mp*(1-2*(Mp*u)**(1/2)):

# du_dphi_2 := (v+w)*(1-2*M*v)*(1-2*M*w)/(2*M
2*M*u)*(v+w- 2*M*(VF*2+viw+w*r*2)+2*M*u**2)/(2*M):

# poly2 := (u-w)*(v-u):

# PolyRes := du_dphi_2 / poly2 :
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sqrt(8*Rp/x):
stic operator.
de space-time.
-3/2):
corrected law.
acceleration”.

HHHHHHHHHH
dvance #
HHHHH

do, di, d2, d3,
rcC, DeltaRad,

HARHH A

- (1-

eries” result.

) - (1-
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# Res := PolyRes**(-1/2):

# series(Res, u, 2); # and Numa3elt = this "s
# The result of this “series” is inserted in

# program below in red.

HHHHH BT HHH Relativity ###HHHH#7HHIHY
M := Gh/c**2:

ao := 1/((1-2*M*v-2*M*wW)(1/2)):

al ;= 1/(1-2*M*v-2*M*w)"(3/2)*M:

a2 .= 3/2/(1-2*M*v-2*M*w)™(5/2)*M"2:

a3 := 5/2/(1-2*M*v-2*M*wW)™N(7/2)*M"3:

a4 := 35/8/(1-2*M*v-2*M*w)"(9/2)*M"4.

NumRelat := a0 + al*u + a2*u**2 + a3*u**3 + a4*u*

HEHHHHHHH TR 3 elts #HHHaH AT
Mp = (Ghp/c**2):

18/11/2013

eries" result.
the

HHHHH AR

*4:

HAHIHH I

Num3elt := 1/ ((1- 2% Mp*v- 2% Mp*w) A( 1/ 2) ) - 2/ ( 1- 2* Mp* v-

2% Mp*w) A3/ 2) * (v+w) * MpA( 3/ 2) *ur( 1/ 2) +1/ ( 1- 2% Mp* v-

2% Mp*w) A( 1/ 2) * ( Mp/ ( 1- 2% Mp* v- 2% Mp* W) +6* ( v+w) A2* MpA3/ ( 1- 2% Mp* v-
2% Mp* W) A2) * u+1/ ( 1- 2% Mp* v- 2% Mp* W) A( 1/ 2) * (- 2* Mp~A( 3/ 2) / ( 1- 2* Mp* v-

2* Mp*w) - 6* (v+w) *Mp"(5/2) /1 (1-2* Mp*v- 2* Mp*w) " 2-
20% (v+w) *3* M (9/ 2) [ (1- 2* Mp*v-2* Mp*w) *3) *u”r(3/ 2):

TR Perihelion advance ##H#HH#
AdvRelat := evalf(Int(NumRelat, psi = 0..2*Pi, di
2*Pi);
AdvRelatArcC = evalf(AdvRelat * (0.103/(5*10**(-
DeltaRad := evalf(Int((Num3elt - NumRelat), psi =
digits=15)):
DeltaArcC := evalf(DeltaRad * (0.103/(5*10**(-7))

print(planet);

print("Advance Relat/Newton");
print(AdvRelatArcC);
print("Advance 3elts/Relat");
print(DeltaArcC);

end proc:

HHHHHHHHHH T Mercure ST
a:=5.8 * 10**(12) * cm:

e :=0.206:
p:=a*(1-e**2):
v = (1+e)/p:

w = (1-e)/p:

PerihelionCalcul("Mercure”, w, v);
HHHHHHHHHH A Saturn #H T

rp := 1.51450 * 10**9 * km:
rm := 1.35255 * 10**9 * km:
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) * 415):;

HARHH A

HARBHHHHHHHHH
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w = 1/rp:
v :=1/rm:
print("\n");
PerihelionCalcul("Saturn”, w, v);
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APPENDIX 9 SIDERAL GRAVITY CALCULATION

# MAPLE program
# This program is estimating the sideral gravity
# in the context of the three elements theory.

# DISTANCES
c:.=3*10*8.:

km := 1000 :

pc := 3.08568025 * 10**16 :
kpc := 1000*pc:

AU := 149598000 * km :

YL :=c * 365 * 24 * 3600:
G=1:

# SUN
MO :=1.9891 * 10**30 :
r0 := 1392000 * km :

# GALAXY
rg_last := 4.257 * 10**18 : # Maximum active ray i
# galaxy. Empirical va
# Fitted with Pioneer an
rhog := 5.7 * 10**(-22):  # Matter density near
Xs := 8*kpc: # Sun galactic center

# 1) Stars locally. # There are NbStarsLoc
NbStarsLocal := 65: # inside a sphere whic
RayStarsLocal :=5 * pc: # equal to RayStarsLoc
# Wikipedia Internet s
#http://fr.wikipedia.org/wiki/Liste_d%27%C3%A9toile

# 2) Calculation solid angle for the attracting lin

# the balance.

DistMass := (23.4 + 2*10)/2:

RayMass = (23.4 / 2.5)/2:

AngleBalance := invfunc[tan] ( RayMass / DistMass )

SolidAngleBalance := 2 * %pi * (1 - cos(AngleBalanc
# Solid angle calculated below in ¢
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ContribStarCalculation := proc(r)
local Lu, Lg, alpha, rg_last_real, SolidAngleMax,
SolidAngleByStar, NbStars, RelatAmpli, Rela

# 3) Calculation of rg_last_real.

Lu:=1: # Extragalactic cont

Lg :=r/xs: # Intragalactic cont

if(r=0) # Meaning Extragalactic contribu
then alpha :=0:

else alpha := Lu/Lg:
end if: # Here alpha always = extragalcont/intra
rg_last_real := rg_last/(1+alpha): # Ray proport

# see parag “The real rg_last

# 4) Calculation solid angle for one star.
NbStars := NbStarsLocal * (rg_last_real / RayStar
SolidAngleMax :=4*%pi: #4pi=2pi(1-
SolidAngleByStar := SolidAngleMax / NbStars:

# 5) Calculation relative amplitude of contributi
# signal when Earth is rotating

# around the fixed system of stars.

RelatAmpli := (1/(1+alpha)) * SolidAngleByStar /

SolidAng
# 6) Calculation relative amplitude of G.
RelatAmpliG := 2 * RelatAmpli; #Tobec
# with 0.
e e s
# Theoretical appendix.
S

# Calculation of function SolidAngle (SolidA) as
# of the angle (theta)

#SolidA := sum of 0 to theta de (2 pi sin(r) dr)
#SolidA := sum of 0 to theta de (2 pi L2 t dt)
#SolidA := 2 pi sum of 0 to theta of (sin(t) dt)
#SolidA := 2 pi [- cos(t)] O to theta

#SolidA := 2 pi (1 - cos(theta))

end proc:

print("0 kpc");

r:=0: # Around 1 kpc ? Distance at which Lu=Lg.
# Difficult to estimate!

print("Ratio extragal/gal");

print("0");

print("Relative G error:");

ContribStarCalculation( r);

print("\n");

print("0.5 kpc");
r := 0.5*kpc:
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print("Ratio extragal/gal");
print(xs/r);

print("Relative G error:");
ContribStarCalculation( r );
print("\n");

print("1 kpc");

r:= 1*kpc:

print("Ratio extragal/gal");
print(xs/r);

print("Relative G error:");
ContribStarCalculation( r );
print("\n");

print("2 kpc");

r:= 2*kpc:

print("Ratio extragal/gal");
print(xs/r);

print("Relative G error:");
ContribStarCalculation( r );
print("\n");

print("4 kpc");

r .= 4*kpc:

print("Ratio extragal/gal");
print(xs/r);

print("Relative G error:");
ContribStarCalculation( r);
print("\n");

r-=1*kpc:

unassign('x’): Digits:= 30: m:=1: M:=7 * 10**36: G
10**(-11): c:= 3 * 10**8:

R:= M*G/c**2: kpc:= 3.08 * 10**19:  # Initialis
e:=sqrt(8*R/x) / (1 + r/x) : # "relativistic coeff
cos2:=(1+e)/((1+el2)**2): # Square of relat
tg:=sqgrt( 1/cos2 - 1) : # Slope of space
St.

F:=-m*c**2 * diff(tg,x) *tg * (1 - tg**2)**

FN:=m * c**2 * R/(x**2) : # Classical "Newton's
vlkpc:=sqrt( F*x/m): # Tangential speed
vn:=sqrt( FN *x/m) : # Classical Newto

r:=4*kpc:

unassign('x’): Digits:= 30: m:=1: M:=7 * 10**36: G
10**(-11): c:= 3 * 10**8:

R:= M*G/c**2: kpc:= 3.08 * 10**19:
e:=sqrt(8*R/x) / (1 + r/x) :
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cos2:=(1+e)/((1+el2)**2):

tg:=sqrt( 1/cos2 - 1) :

F:=-m*c**2 * diff(tg,x) *tg * (1 - tg**2)**
FN:=m * c**2 * R/(x**2) :

vakpc:=sqrt( F*x/m):

X = y*kpc:

plot([vlkpc, v4kpc, vn], y=1..15, color=[red,green,
style=[line,line], numpoints=1000, title="Speed pro
legend=["1 kpc", "4 kpc", "Newton'law"], labels=["D
galactic center in kpc", "Speed in km/sec"));
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APPENDIX 10 KUIPER CONTRIBUTION

Here are the calculations done for constructiothefequation of the symmetric contribution coming
from the Kuiper belt.

Lk/Lg(x)
d Lk/Lg(x) / dx

VIpk/pgllrg V[(rk —x)? - (rk’ — x)?]
VIpkipg] Irg (%) [(rk = Xx)2 - (1K’ = X)Z**(-Y2)

[-2(rk = xX) + 2(rk’ — X) ]
Vpkipg] Irg [(rk —x)2 - (k' = x)Z**(-%2) (rk’ — rk)
((rk’ = rk)/rg)V[pk/pg] /V[(rk —x)2 - (rk’ — x)?]
((rk’ = rk)/rgV[pk/pg] /V[rk2 - rk'?]
((rk’ = rk)/rgV[pk/pg] /V[(rk - rk’) (rk + rk")]
-V[pk/pg] V[(rk - rk)/(rk + rk’)] / rg

d Lk/Lg(x) / dx
d Lk/Lg(x) / dx
d Lk/Lg/dx in x=0
d Lk/Lg/dx in x=0
d Lk/Lg/dx in x=0

f = A - B X
with:

A =V[pk/pg]/rg V[rk2 - rk'?]

B = (V[pk/pg] V[(rk - rk’)/(rk + rk’)] / rg)
f=0 for:

V[pk/pgl/irg V[rk2-rk3 - (/[pk/pg] V[(rk - rk)/(rk +rk)]/rg) x =0

X = V[pk/pgl/irg V[rkz2-rk2] |  {[pk/pg] V[(rk - rk)/(rk + rk)]/rg)
X = V[rkz - rkq] [ V[(rk - rk)/(rk + rk)]

X = V[ (rk - rk)(rk + rk?) / ((rk - rk)/(rk + 1K) ]

X = V[ (rk +rk’) / (1/(rk +rk’)) ]

X = V[ (rk + rk’)?]

X = rk + rk’

h = (2/Pi) hmax arctan( (2/Pi) xKuiper/x ')

hmax = V[pk/pgl/rg V[rk2 - rk’2]
For x=0 ?

h = (2/Pi)hmax arctan((2/Pi)xKuiper/x)
(Pi/2) h/hmax = arctan((2/Pi)xKuiper/x)
tan( (Pi/2) h/hmax ) = (2/Pi)xKuiper/x
tan( (Pi/2) h/hmax ) = infinite

(Pi/2) h/hmax ) = Pi/2

h = hmax

dh/dx? => For x=0 ?

dh/dx = (2/Pi)hmax 1/(1 + ((2/Pi)xKuiper/x)?) (2Q)RKuiper (-1/x?)
dh/dx = (2/Pi)hmax(2/Pi)xKuiper(-1/x?)/ (1 +((2/RKuiper/x)?)
dh/dx = - (2/Pi)2hmax xKuiper / (x2 +((2/Pi)xKuipé&r

dh/dx en 0 = - (2/Pi)2hmax xKuiper /((2/Pi)xKuipgr)

dh/dx en 0 = - hmax xKuiper /xKuiper?

dh/dx en 0 = - hmax / xKuiper

dh/dx en 0 = ¥/[pk/pg]/rg V[rk2-rk'2] |/ (rk +rk)
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dh/dx en 0 = ¥/[pk/pg]/rg V[(rk - rk’)/(rk + rk’)]
dh/dxen0=-B

Below are the lines of codes which must be addéldea¢nd of the program of appendix 3 in order
to see the curve of the Kuiper belt contributiohweell as other curves such as the tangent of this
curve for x=0.

unassign('x’):

rkp := xkmin:
rk := xkmax:
rhog := rhoO:

f:= (sqgrt(rhok/rhog) / rg_last) * sqrt((rk-x)**2 (rkp-x)**2):

A = (sgrt(rhok/rhog) / rg_last) * sqrt(rk**2rkp**2):

B := (sqgrt(rhok/rhog) / rg_last) * sqrt((rk-rkfk+rkp)):

d:=A-B*x

xKuiper := xkmin + xkmax:

Lk _on_Lg :=Lk on_Lg _max * (2/Pi) * invfunc[tan]((Ri) * xKuiper/x):
plot([f,d,Lk_on_Lg],x=0..5*(rk+rkp)/2, color=[redrgen,blue]);

Below are the resulting curves. In red is the equatl5). In green is the tangent of this curve for
x=0. In blue is the final Kuiper belt contributiowhich share the same tangent in x=0 with the red
and the green curve. The contribution for the Kulpedt which is used in the program of appendix 3
is the same except for the value xKuiper, whichasequal to xkmin+xkmax = 78 AU, like here,

but which is equal to 114 AU, which is a fitted walfor taking into account the scattered disk and
other transneptunian objects.

0.00157

0.001 4

0.0003
¥

Se+1 le+13 1.5e+13 2e+13 2.5e+13

-0.00054

-0.0014

-0.001549

-0.002
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APPENDIX 11 GALAXIES SPEED PROFILES: SOLVING THE SI GN
ISSUE

HHHHHH AR HHHHHHHH R

# #

# CALCULATION OF THE VELOCITY CURVES OF NGC3 310 #

# NGC1068 NGC157 NGC7541 AND NGC7331 GALAXI ES #

# TAKING INTO ACCOUNT AN OCCULTATION MECHAN ISM #
# #

# This MAPLE program is calculating and plotting th e curve of #
# rotation velocity of the galaxy stars, as a funct ion of #

# their distance x from the galactic center. #

# #

# This calculation is done for the NGC3310 NGC1068 #

# NGC157 NGC7541 and NGC7331 galaxies. #

# #

# It is done using uniquely the <<solution for the #

# "dark matter mystery" based on Euclidean relativi ty>> #
# article. Refer to this article in vixra april 200 9 #

# F.Lassialille : viXra.org, Relativity and Cosmolog Y, #

# viXra:0912.0048. #

# #

# The matter density values are memorized in the "r ho" arrays. #
# They has been printed and measured on the printed papers. #
# Those values are convert in Kg/AL3, then smoothed witha #
# polynomial interpolation. #

# #

# After this, the calculation is done. #

# Equations for calculating the resulting curve is explained #
# and determined in the article mentioned above. #

# #

# Determination of the constant <<r>> used in these equations #
# is made using the informations coming from anothe r'dark #
# matter" mystery, the velocities of galaxies insid e their #

# groups (see article). It uses also the value of 1 0 for #

# G'/G, where G' is the extra-galactic gravitationa I #

# constant, outside the studied galaxy. G is our #

# gravitational constant, inside our milky-way gala Xy. #

# #

# The curve for the calculated gravitational force shows #
# great variations along the x axis. There are, rou ghly, #

# as much positive (attractive) values as negative values. #
# This is why the following usual formula, v2 = F x / m, is not #
# correct in this case, because this formula suppos esa #

# positive (attractive) value of F. #

# #

# For trying to solve simply this problem, i smooth ed the #
# force curve with a FSmoothFactor, and raised it u p enough #
# (+F_pull) in order to get only positive values fo rF. #

# The FSmoothFactor value has been fitted in order to getthe #
# best resulting compared speed values for the 2 ma ximum of the #
# NGC3310 galaxy speed curve. #

# #

# After that the speed is calculated with v = sqrt( Fx/m). #
# Since the gravitational force was raised up with avalue #
# F_pull, i substract a value sqrt(F_pull x) after calculating #
# the speed. #

# This is the calculation done with ProgMode set to 10and 11. #
# #

# The resulting curve has the same shape and the sa
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# the measured one.

#

# A more correct calculation of the speed, using on

# the initial curve of the force, is done with Prog

# In this case the calculation is a simulation of t

# trajectories of the stars. Each simulated star is

# on the same "Ox" axis and at the same speed.

# For each simulated star, the program stops the st

# simulation as soon as this one reach the "Or" axi

# and calculates the rotational speed of this star

# instant. The "Or" axis is a straight line startin

# origin (0,0), and makes an "a" angle with "Ox", t

# axis (starting from the origin also) from where t

# stars has started.

# This "a" angle, the initial speed, and some more

# are set depending of the galaxy the program is wo

#

# At the end i execute exactly the same program but

# NGC1068 galaxy. Again i obtain nearly the same va

# same shape. Also i executed exactly the same prog

# the NGC 157 NGC 7541 and NGC 7331 galaxies. But h
# get any estimation of galactic center masses. How

# global shape is retrieved also in this case.

#

HHH A
HHH A

HHHHHH AR
HH T A INitialisations #H#HE
HHHHHH AR

# MAPLE --------m-----
with(CurveFitting):
Digits ;=50 : # Floating poin

MAXVAL := 10**100000000:
unassign('DensPoly"): unassign('n’):

unassign('l"): unassign('ll’): unassig
unassign('x'): unassign('xprime"): unassig
unassign('tg"): unassign('cos2'):  unassig

unassign('v'):

# oo Cosmological values -----------
kpc :=3.08 * 10**19 : # 1 kilo parsec expre

c:=3*10**8/ kpc: # light s

AL := 365 * 24 * 3600 * c: # 1 year
pc := kpc/1000 : # 1 parsec expres
MO :=2 * 10**30 : #S

G :=6.6742867 *10**(-11)/kpc**3: # Gravit const m

Gp:=10*G: # Gravitational constant outsi

rho0 := 0.003 * MO / (AL**3): # Matter density nea
#i

R Corrected Newton's law calculation --

Si_So :=sqrt(Gp/G) - 1: # Intra gal/extra-galactic
r:=rho0 * Si_So**(-2): # Square of extragalacti
# proportional to the square of
# lights contributions. Linked t
# Unit : Kg m(-3).
k_factor := sqrt(r) + sqrt(rho0): # In order to ha
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HHHHHHHH R
HHHHHHHH R
HHHHHHHH R
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# classical Newton's law in the case

# system. This value supposes that t

# of mass density around the sun is

# and negligeable in front o rhoO.
# - Fitted parameters for the contributions: ------
# Those parameters have been fitted in order to get
# possible curve for the speed profiles of the gala
KO := 3.75: # For "discarding” properly the

# contribution near the ga

K1:=0.4 * 10**39: # For modelised intra-galactic

R Discretising the curve of the force --
MUL :=50: # This multiplies the NPoly numbe
# number of points for discretising the

HHHHHHH R
# PROGRAM MODE
HHHHHH AR

#--m-- WHAT DO YOU WANT TO CALCULATE WITH THIS PRO
ProgMode := 10: # 0: Speed profile brute force
# 10: Relative speed profile: fo
#  raised up, speed calculate
#  and sqrt(Fup * x) substrac
#11: Same as 10 but with a much
#  for the mass of the galact
#  for weakening the effect o
#  variations of matter densi
# 20: Speed profile: dynamic cal
#  from the star trajectories
# 24: Same as 20 but along a spe
# 30: Star trajectories in 2D.
# 40: Plotting the matter densit
#  (after interpolation).
# 50: Plotting e: "relativistic
# 60: Plotting cos2: square of t
#  relativistic operator.
# 70: Plotting tg: tan = slope o
# 80: Plotting the gravitationna
# 90: Plotting integral mass pro
# 100: Plotting curve of space in
#  space-time.

# Parameters ------------
H oo if ProgMode := 10 or 11 -----
FSmoothFactor := 1.6 * 10**(-4): # Reduce amplit

H oo if ProgMode := 11 ---------
MFactor := 0.3 * 10**20:

HHHBHH AR AR R R R R
AR Calculation procedure ###HHH

HH T R R T
# M: Mass of the galactic center, in Kg.

# rho: Matter density values, in Kg/m3.

# IMin: First indice of valid values in the rh
#IMax:  Last indice of valid values in the rho
# xmin:  Distance in m corresponding to imin.
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# xmax:
# xminpl:

Distance in m corresponding to imax.
Plotting min distance from the galacti

# xmaxpl:  Plotting max distance from the galacti

# NPoly:  Nbpts polynomial smoothing of matter d
# HSpeed: A constant used for raising or lowing

# The shape of the curve in not affected

# Only the whole curve is raised up or |

# ProgMode: Very important : what has to be done.
# See above all the possible values.

# NbStep: Only if ProgMode = 20<->30 (simulation
# trajectories). Nb of step of simulatio

# NbTraject: Only if ProgMode = 20<->30. Nb of simu
# v0: Only if ProgMode = 20<->30. Initial sp
#dy: Only if ProgMode = 20<->30. Sampling s
# AxisAngle: Only if ProgMode = 24. Angle of the ax

# calculation of the speed profile. This
# line starting from the galactic center
# is between this axis and the axis from
# are initially starting with vO speed.

# Title:  for writing the title of the figure wh

GalaxySpeedCalcul := proc( M, rho, IMin, IMax, xmin
xmax, xminpl, xmaxpl, NP
HSpeed, ProgMode, NbStep
v0, dy, AxisAngle, Title

# This procedure ensures that the calculation is ex
# same for each galaxy.

local xminm, xmaxm, xminplm, xmaxplm, Delta, DeltaK
Step, Ip, DensPoly, Lend, s, F, v, IMinForce,
StepForce, n, x, Xar, F_arr, F_mean, F_min, F
FSmooth, imin2, imax2, v_arr, Fup, Fupa, Fups
imax3, Fold, vmin, vmax, vup, imin4, imax4, |
XX, VY, i, VX, vy, Ir, w, Iv, |, y, Ixy, Int

#-mmmmmm e Scaling factor ----------------

Xxminm := xmin*kpc:

Xmaxm = xmax*kpc:

xminplm := xminpl*kpc:

xmaxplm := xmaxpl*kpc:

Delta := (xmaxm-xminm)/(IMax-IMin): # Distance in
# consecutive measurements

DeltaKpc := Delta/kpc:

#-mmmmmm e Cosmological value ------------
if(ProgMode = 11 ) then
M2 := M * MFactor:
else:
M2 .= M: # No
end if:
R:=M2*G/c**2: # Schwarschild ray for consi

# Weakening effect of ma

A Polynomial interpolation #####H
# That's mandatory because calculation of gravitati

# is very sensitive to low variations. This sensiti

# demonstrated with calculations, and is seen with

Step := floor((IMax-IMin)/(NPoly-1)):

# Nb values skipped between
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Ip :=[[xmin + DeltaKpc*nn*Step, rho[IMin + nn*Step
$nn=0.

unassign('x’):

DensPoly := Polynomiallnterpolation(lp, x) :

#itHHHH## Corrected Newton's law calculation ###

# oo Symmetric contribution --------
Lend := xmaxpl: # Location of the end

s := KO/x**(3/4) # Near galactic center, behaviou
# same... Fitted added contrib. fo
+ sqrt( K1/DensPaly ):
# oo Gravitational force -----------

F := (k_factor**2/r) * (M*G/x**2) * (s + 2*x*diff(s

A Calculation and plotting depending of t
unassign('x’):

if( ProgMode = 0)
then

# If NO smoothing o
# plot speed curve with positive

HHHEHHE T Plotting the v curve ##H#HH#HEH#
unassign('x’): #

v = sqrt( abs(max(F,0) * x)) * kpc : # neg va

plot( v, x=xminpl..xmaxpl ); #vinm/s a

elif( ProgMode = 10 or ProgMode = 11 ) then  #
# gravit force for getting repulsing effe

# of
R Discretising the curve of the force
# in order to be able to smooth it.

IMinForce = 1: # Each value between xmaxp
IMaxForce := NPoly * MUL: # discretised with Npol
StepForce := (xmaxpl-xminpl) / (IMaxForce - IMinF

for n from IMinForce to IMaxForce
do
X := xminpl + (n - IMinForce) * StepForce:

Xar[n] ;= x: # For performance me
F_arr[n] := F(x): # Dis

end do:

# oo Smoothing the force ----------

# --- Calculating the min, max and mean of F curv
F_mean :=0:
F_min := MAXVAL:
F_max := -MAXVAL.:
for n from IMinForce to IMaxForce
do
F_mean := F_arr[n]:
F_min := min(F_arr[n], F_min):
F_max := max(F_max, F_arr[n]):
end do:
F_mean := F_mean/(IMaxForce-IMinForce+1):
unassign('x'):

# --- Calculating value for raising up the whole
F_pull := max( F_max-F_mean, F_mean-F_min ) * FSm
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# --- Actual smotthing of the curve -------------
unassign('x'):
for n from IMinForce to IMaxForce
do

FSmooth[n] := F_pull + (F_arr[n]-F_mean) * FSmo
end do:

# --- Cutting the edges if negatives values ----
imin2 := IMinForce:
for n from IMinForce to IMaxForce
do
if(FSmooth[n] >= 0)
then
imin2 := n:
break:
end if;
end do:

imax2 := IMaxForce:
for n from IMaxForce to IMinForce by -1

do
if(FSmooth[n] >= 0)
then
imax2 := n:
break:
end if;
end do:
R Calculation of the speed -----------

# using simple smoothing of the gravitational for
# usual equation v2=F x / m.

unassign('x’):
for n from imin2 to imax2
do
v_arr[n] := sgrt( FSmooth[n] * Xar[n] ):
# This speed has globally the sqrt(F_pul

# - Substracting "raising up force" term --

Fup := F_pull - F_mean*FSmoothFactor:

Fupa := abs(Fup):

Fups := sign(Fup):

v_arr[n] := v_arr[n] - Fups * sqrt(Fupa * Xar[n
end do:

# --- Calculating boundaries for calculating the
imin3 ;= imin2:
for n from imin2+1 to imax2
do
if(v_arr[n] < v_arr[n-1])
then
imin3 := n-1:
break:
end if;
end do:

imax3 := imax2:
Fold := -MAXVAL:
for n from imax2-1 to imin2 by -1
do
if(v_arr[n] < v_arr[n+1])
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then
imax3 := n+1:
break:
end if;
end do:

if(imin3 = imax3) #
then
imin3 := imin2: # Stay with old
imax3 := imin3:
else  # There is a minimum. Boundaries imin 4
end if: # = maximum on the left and max on

# --- Calculating the min, max of v curve -------
vmin := MAXVAL:
vmax = -MAXVAL:
for n from imin3 to imax3
do
vmin := min( v_arr[n], vmin ):
vmax := max( v_arr[n], vmax ):
end do:

# --- Calculating value for raising up the whole
if(vmin < 0)
then
# ---- Using the fitting parameter for raising
vup = - vmin + (vmax-vmin) * HSpeed:
else # Here no use f
vup :=0:
end if:

# --- Raising up curve and cutting edges if neg v
imin4 := imin2:
for n from imin2 to imax2
do
if(v_arr[n]+vup >= 0)
then
imin4 := n:
break:
end if;
end do:

imax4 = imax2:
for n from imax2 to imin2 by -1
do
if(v_arr[n]+vup >= 0)
then
imax4 := n:
break:
end if;
end do:
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HHH A Plotting the curve ####HHH#IH

# Speed curve -----------
Il ;= [[Xar[nn], (v_arr[nn] + vup)/(v_arr[imax4]
$nn=imi
plot(ll, Title=xminpl..xmaxpl,
labels=[Title, Relative_speed]);
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elif( ProgMode = 20 ) then # If simulating dynami
# to calculate speed o

Step := (xmaxpl - xminpl)/(NbTraject-1):
for k from 1 to NbTraject
do

X0 := xminpl + (k-1)*Step:

x0 :=0.001 + (k-1)*Step:

dt := dy/vO:
xx[1] := xO0:
yy[1] = 0:

xx[2] := xx[1]:
yy[2] := yy[1] + dy:
for i from 3 to NbStep
do
x := evalf( sqrt(xx[i-1]**2 + yy[i-1]**2) ):
xX[i] := evalf( - xx[i-2]
+ xx[i-1] * ( 2 - (dt**2*F(x))
yyli] := evalf( - yy[i-2]
+yy[i-1] * (2 - (dt™2*F(x))
end do:

vx := (XX[NbStep] - xx[NbStep-1])/dt:
vy := (yy[NbStep] - yy[NbStep-1])/dt:
rr[K] := evalf( sqrt(xx[NbStep]**2 + yy[NbStep]
if(yy[NbStep] = 0) then

wlK] := 0:
else

wIK] := (xx[NbStep]*vx + yy[NbStep]*vy) / r

* (xX[NbStep]
- rr[K]*vx
end if:
end do:

Iv := [[rr[kk], vv[kk]*kpc] $kk=1..NbTraject]:
plot(lv, Title=xminpl..xmaxpl, style=line );

elif( ProgMode = 24 ) then # Same as 20 but with
# of speed along an ax

Step := (xmaxpl - xminpl)/(NbTraject-1):

[:=1:
for k from 1 to NbTraject
do
X0 := xminpl + (k-1)*Step:
x0 :=0.001 + (k-1)*Step:

dt := dy/vO:
xx[1] := xO0:
yy[1] :=O:

xx[2] := xx[1]:
yy[2] := yy[1] + dy:

for i from 3 to NbStep
do
x := evalf( sqrt(xx[i-1]**2 + yy[i-1]**2) ):
xX([i] := evalf( - xx[i-2]
+ xx[i-1] * ( 2 - (dt**2*F(x))
yyli] := evalf( - yy[i-2]
+yy[i-1] * (2 - (dt™2*F(x))
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if( yy[il/xx[i] > sin(AxisAngle) ) then
=i+
break:

end if:

end do:

if(i = NbStep+1) then
next: # Don't reach the
else: # Reached the axi
vX = (XX[i-1] - xx[i-2])/dt:
vy = (yy[i-1] - yy[i-2])/dt:
X = xx[i-1]:
y = yy[i-1]:
rr[l] := evalf( sqrt(x**2 + y**2) ):
if(y = 0) then
w]l] :=0:
else
WwI] := (Ocvx+y*vwy)/re[l])*x/ly - rr[l]*vx
end if:
[:=1+1:
end if:
end do:

Iv := [[rr[lN], w[ll]*kpc] $lI=1..I-1]:
plot(lv, Title=xminpl..xmaxpl, style=line );
plot(lv, Title=xminpl..xmaxpl, style=point );

elif( ProgMode = 30 ) then # Plotting star traject

Step := (xmaxpl - xminpl)/(NbTraject-1):
for k from 1 to NbTraject
do
X0 := xminpl + (k-1)*Step:
dt ;= dy/vO:
xx[k,1] := x0:
yy[k,1] := 0:
xx[k,2] := xx[k,1]:
yylk,2] := yy[k,1] + dy:

for i from 3 to NbStep
do
x := evalf( sgrt(xx[k,i-1]**2 + yy[k,i-1]**2)
xx[k,i] := evalf( - xx[k,i-2]
+ xx[Kk,i-1] * ( 2 - (dt**2*F(x
yylk,i] := evalf( - yy[k,i-2]
+ yy[k,i-1] * ( 2 - (dt**2*F(x
end do:
end do:

Ixy := [ [[xx[kk,nn], yy[kk,nn]] $nn=1.. NbStep]
plot(Ixy, style=line);

elif( ProgMode = 40 ) then # For ma
#plot( DensPoly, x=xminpl..xmaxpl );
plot( DensPoly, x=1.5..xmaxpl );
elif( ProgMode = 50 ) then
plot( e, x=xminpl..xmaxpl );
elif( ProgMode = 60 ) then
plot( cos2, x=xminpl..xmaxpl );
elif( ProgMode = 70 ) then
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plot( tg, x=xminpl..xmaxpl );
elif( ProgMode = 80 ) then
plot( F, x=xminpl..xmaxpl );
elif( ProgMode = 90 ) then # For integral ma
IntDensPoly := int(DensPoly, x);
plot(IntDensPoly, x=xminpl..xmaxpl ); # Do

elif( ProgMode = 100 ) then
# TO BE WRITTEN #

else

end if:

# Space inside

end proc: # end of "GalaxyProgModeul"

HHHHHH AR
HH R A NGC3310 and NGC1068 #it#HitHHHtHHHE
HHHHHHH R

R Matter density values ---------
# Those values are read on a printed paper of the d
# matter of the galaxy. Hence their unit is the mm.

# NGC3310 ---------------

# Below is the value extrapolated from my paper
# supposing that the density matter has a constant
# between 0 and 1 kpc.
rho_NGC3310[1] := 700:
rho_NGC3310[3] := 400:
rho_NGC3310[5] := 200:

rho_NGC3310[2] := 500:
rho_NGC3310[4] := 300:

# Below are the values from my paper, plain line cu
rho_NGC3310[6] := 147:
rho_NGC3310[7] := 94:
rho_NGC3310[9] := 36:

rho_NGC3310[8] := 63:
rho_NGC3310[10] := 18:
rho_NGC3310[11] :=8: rho_NGC3310[12] := 3.3:
rho_NGC3310[13] := 2.3: rho_NGC3310[14] := 0.8:
rho_NGC3310[15] := 0.18: rho_NGC3310[16] := 0.08:
rho_NGC3310[17] := 0.07: rho_NGC3310[18] := 0.08:

rho_NGC3310[19] := 0.2:
rho_NGC3310[21] := 1.4:
rho_NGC3310[23] := 3:
rho_NGC3310[25] := 4.5:
rho_NGC3310[27] :=5.7:
rho_NGC3310[29] := 6.55:
rho_NGC3310[31] := 6.9:
rho_NGC3310[33] :=5.1:
rho_NGC3310[35] := 4.5:
rho_NGC3310[37] := 3.85:
rho_NGC3310[39] := 2.9:
rho_NGC3310[41] := 2.05:

rho_NGC3310[20] := 1.2:
rho_NGC3310[22] := 2.5:

rho_NGC3310[24] := 4:

rho_NGC3310[26] :=5:
rho_NGC3310[28] := 6.5:
rho_NGC3310[30] := 6.6:
rho_NGC3310[32] :=5.2:
rho_NGC3310[34] :=5:
rho_NGC3310[36] := 4:
rho_NGC3310[38] := 3.7:
rho_NGC3310[40] := 2.1:
rho_NGC3310[42] := 2:

# Below are the values from my paper, plain dashed

rho_NGC3310[43] := 1.9:

rho_NGC3310[45] := 1.78:
rho_NGC3310[47] := 1.77:
rho_NGC3310[49] := 1.76:
rho_NGC3310[51] := 1.75:

IMIN_NGC3310 :=5:

Frédéric LASSIAILLEO 2011

rho_NGC3310[44] := 1.8:

rho_NGC3310[46] := 1.77:
rho_NGC3310[48] := 1.76:
rho_NGC3310[50] := 1.75:
rho_NGC3310[52] := 1.74:

# First valid indice fo
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IMAX_NGC3310 := 52:
LMIN_NGC3310 := 0.69:
LMAX_NGC3310 := 7.25:

2011 Page 104

# Last valid indice fo
# Distance correspondin
# Distance correspond

LMINPL_NGC3310:=0.01: # Min value for x, for
LMAXPL_NGC3310 :=6.57: # Max value for x, for p
NPOLY_NGC3310 :=10: # Nb points for polynomial in
HSPEED_NGC3310 :=1.02: # Fi
M_NGC3310 :=0.07 * 10**11 * MO : # NGC3310 center

NBSTEP_NGC3310 :=75:

NBTRAJ_NGC3310 := 3000 :
VO_NGC3310 := 150¥10**3/kpc:

DY_NGC3310 := 1/50 :
AXANG_NGC3310 := 0.33

# Nb of steps for star

# Nb of stars for star
# Init speed for
# Sampling space pe

. # Angle of axis for pro

# (Nl ToxT0]1: J—

# Below is the value extrapolated from my paper
# supposing that the density matter has a constant

# between 0 and 1 kpc.
rho_NGC1068[1] := 1000:
rho_NGC1068[3] := 600:
rho_NGC1068[5] := 350:
rho_NGC1068[7] := 220:

rho_NGC1068[2] := 800:
rho_NGC1068[4] := 400:
rho_NGC1068[6] := 300:

# Below are the values from my paper, plain line cu

rho_NGC1068[8] := 160:
rho_NGC1068[9] := 124
rho_NGC1068[11] := 77:
rho_NGC1068[13] := 48.5:
rho_NGC1068[15] := 32:
rho_NGC1068[17] := 23:
rho_NGC1068[19] := 18:
rho_NGC1068[21] := 16:
rho_NGC1068[23] := 14.6:
rho_NGC1068[25] := 14.7:
rho_NGC1068[27] := 15.2:
rho_NGC1068[29] := 15.8:
rho_NGC1068[31] := 16.5:
rho_NGC1068[33] := 17.05
rho_NGC1068[35] := 17.5:
rho_NGC1068[37] := 18:
rho_NGC1068[39] := 18.1:

rho_NGC1068[10] := 99:
rho_NGC1068[12] := 62.5:
rho_NGC1068[14] := 40:
rho_NGC1068[16] := 26.5:
rho_NGC1068[18] := 20:
rho_NGC1068[20] := 17:
rho_NGC1068[22] := 15.3:
rho_NGC1068[24] := 14.5:
rho_NGC1068[26] := 15:
rho_NGC1068[28] := 15.5:
rho_NGC1068[30] := 16:
rho_NGC1068[32] := 16.8:
:rho_NGC1068[34] :=17.3:
rho_NGC1068[36] := 17.8:
rho_NGC1068[38] := 18.1:
rho_NGC1068[40] := 18.2:

# For information only : below are the value extrap
# from my paper using a simple straight line with t

# right measured slope.

rho_NGC1068[41] := 18.21:
rho_NGC1068[43] := 18.23:
rho_NGC1068[45] := 18.25:
rho_NGC1068[47] := 18.27:
rho_NGC1068[49] := 18.29:

rho_NGC1068[42] := 18.22
rho_NGC1068[44] := 18.24
rho_NGC1068[46] := 18.26
rho_NGC1068[48] := 18.28
rho_NGC1068[50] := 18.3:

# ---- Below is the value extrapolated from my pape
# supposing that the density matter is lowering aft

# This indice 46 is the only

used value by polynomi

# interpolation in this extrapolated range.

rho_NGC1068[46] := 10:

rho_NGC1068[46] := 18:
# when ProMode =

Frédéric LASSIAILLEO 2011
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# First valid indice f
# Last valid indice fo
# Distance correspon
# Distance correspon
# Best value for M

IMIN_NGC1068 := 1:
IMAX_NGC1068 := 50:
LMIN_NGC1068 := 0.1388:
LMAX_NGC1068 := 6.97:
LMINPL_NGC1068 :=0.01:
LMINPL_NGC1068 := 0.1: # Best value for M
LMAXPL_NGC1068 := 6: # Max value for x, for
NPOLY_NGC1068 := 10: # Nb points for polynomial i
HSPEED_NGC1068 := 23.5: #F
M_NGC1068 := 10**10 * MO : # NGC1068 cente
#M_NGC1068 :=7.5* 10**10 * MO : # For having mea
NBSTEP_NGC1068 := 480 : # Nb of steps for sta
NBTRAJ_NGC1068 :=3000: # Nb of stars for sta
VO_NGC1068 := 80*10**3/kpc: # Init speed fo
DY_NGC1068 := 1/400: # Sampling space p
AXANG_NGC1068 :=0.16 :  # Angle of axis for pr

i Matter density unit conversion -----

alpha ;= 1.35 * 10**(-24): # Ratio matter density/p
# unit : g cm(-3) mm(-1)

alpha2 := 10**3 * kpc**3: # Ratio for converting m
# from g cm(-3) to kg kp

MatDensUnitConv := proc( rho, IMin, IMax )
local n:
for n from IMin to IMax
do
rho[n] := rho[n] * alpha * alpha2:
end do: # converting from mm on paper to K
end proc:

MatDensUnitConv (rho_NGC3310, IMIN_NGC3310, IMAX_NG
MatDensUnitConv (rho_NGC1068, IMIN_NGC1068, IMAX_NG

e Speed curve calculations -----

GalaxySpeedCalcul( M_NGC3310, rho_NGC3310, IMIN_NGC
IMAX_NGC3310, LMIN_NGC3310, LMAX
LMINPL_NGC3310, LMAXPL_NGC3310,
NPOLY_NGC3310, HSPEED_NGC3310, P
NBSTEP_NGC3310, NBTRAJ_NGC3310,
VO_NGC3310, DY_NGC3310, AXANG_NG
NGC_3310_theoretical_speed_curve

GalaxySpeedCalcul( M_NGC1068, rho_NGC1068, IMIN_NGC
IMAX_NGC1068, LMIN_NGC1068, LMAX
LMINPL_NGC1068, LMAXPL_NGC1068,
HSPEED_NGC1068, ProgMode,
NBSTEP_NGC1068, NBTRAJ_NGC1068,
VO_NGC1068, DY_NGC1068, AXANG_NG
NGC_1068_theoretical speed_curve

HHHHHH R
HHHHHHHH I NGCLST #HHHHHHHHIHH I
HHHHHH R

# oo Matter density values ---------
# Those values are read on a printed paper of the d
# matter of the galaxy. Hence their unit is the mm.
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rho_ NGC157[1] :=69.5: rho_NGC157[2] := 66:
rho_NGC157(3] := 58.5: rho_NGC157[4] := 50:
rho_NGC157[5] :=41.5: rho_NGC157[6] := 33.5:
rho_NGC157[7]:=25: rho_NGC157[8] := 18.5:
rho_NGC157[9] := 12.5: rho_NGC157[10] := 8.8:
rho_NGC157[11] :=5: rho_NGC157[12] := 3:
rho_NGC157[13] :=2.1: rho_NGC157[14] := 1.4:
rho_NGC157[15] := 1.1: rho_NGC157[16] := 1.05:
rho_NGC157[17]:=1: rho_NGC157[18] := 0.6:
rho_NGC157[19] := 0.3: rho_NGC157[20] := 0.3:
rho_NGC157[21] := 0.6: rho_NGC157[22] ;= 3:

IMIN_NGC157 = 1:
IMAX_NGC157 := 22;
LMIN_NGC157 := 0:
LMAX_NGC157 := 26.35:
LMINPL_NGC157 :=0.8: # Min value for X,
LMAXPL_NGC157 :=21.5: # Max value for x,
NPOLY_NGC157 :=6: # Nb points for polynomial i
HSPEED_NGC157 := 4.8: #F
M_NGC157 :=5* 10**11 * MO: # Fitted NGC157
# No correct available measur
NBSTEP_NGC157 := 200 : # Nb of steps for sta
NBTRAJ_NGC157 := 500 : # Nb of stars for sta
VO_NGC157 := 180*10**3/kpc:  # Initial speed fo
DY_NGC157 :=1/20: # Sampling space p
AXANG_NGC157 :=0.4: # Angle of axis for pr

# First valid indice f
# Last valid indice f
# Distance correspon
# Distance correspon

i Matter density unit conversion -----
paperhigh := 69.5: # Paper length for rel dens mat
alpha ;= 0.57 * MO * 10**9 / paperhigh:
# Ratio matter density/p
# unit : Kg kpc(-3) mm(-
for n from IMIN_NGC157 to IMAX_NGC157
do
rho_NGC157[n] ;= rho_NGC157[n] * alpha:
end do: # converting from mm on paper t
# Remark : this matter density is quite th
# of values as the one of the NGC3310.

R e Speed curve calculations -----

GalaxySpeedCalcul( M_NGC157, rho_NGC157, IMIN_NGC15

IMAX_NGC157, LMIN_NGC157, LMAX_N
LMINPL_NGC157, LMAXPL_NGC157, NP
HSPEED_NGC157, ProgMode,
NBSTEP_NGC157, NBTRAJ_NGC157,

VO_NGC157, DY_NGC157, AXANG_NGC1

NGC_157_theoretical_speed_curve

HHHHHH AR
HiHHHHH R NGCT 541 #H#HHHHHHHHHHH
R A R A AR AR R

R Matter density values ---------
# Those values are read on a printed paper of the d
# matter of the galaxy. Hence their unit is the mm.

# Below values of matter density on paper for 0 < x
rho_NGC7541[1] := 126: rho_NGC7541[2] := 124.8:
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rho_NGC7541[3] := 120.5: rho_NGC7541[4] := 114:
rho_NGC7541[5] := 104.5: rho_NGC7541[6] := 86:
rho_NGC7541[7] := 78.5: rho_NGC7541[8] := 75:
rho_NGC7541[9] := 73.8: rho_NGC7541[10] := 72.5:
rho_NGC7541[11] := 71.5: rho_NGC7541[12] := 70.5:
rho_NGC7541[13] := 70:

IMIN_NGC7541 :=1: # First valid indice fo
IMAX_NGC7541 := 91: # Last valid indice fo

# Below are the values of matter density on the pap
# between 2 and 25 kpc. | see a straight line on th
# for x in this range of values.
for n from 14 to IMAX_NGC7541
do

rho_NGC7541[n] := (34-70)*(n-13)/(91-13) + 70:
end do:

LMIN_NGC7541 :=0:
LMAX_NGC7541 := 25:
LMINPL_NGC7541 := 0.3:
LMINPL_NGC7541 := 0.45:
LMINPL_NGC7541 := 0.2:

# Distance correspon
# Distance correspon
# Best value for
# Best value for
# Best value for

LMAXPL_NGC7541 :=23.2: # Max value for x,
NPOLY_NGC7541 := 31: # Nb points for polynomial i
HSPEED_NGC7541 := 3.8: #Fi

M_NGC7541 := 4.6 * 10**10 * MO: # NGC7541 ce
# No available measured value. Kg. =tot

# Warning: with the values below, this prog must ru

# 20 hours on a dual core 2 G Hz PC (but no paralle
# the dual core!).

NBSTEP_NGC7541 :=4200: # Nb of steps for sta
NBTRAJ_NGC7541:=2000: # Nb of stars for sta
VO_NGC7541 := 287*10**3/kpc:  # Initial speed fo
DY_NGC7541 ;= 1/78: # Sampling space p
AXANG_NGC7541:=0.94: # Angle of axis for pr

i Matter density unit conversion -----
alpha ;=2 *10**36: # Ratio matter density/pape

# FITTED VALUE BECAUSE NO MATTER DENSITY A

# for this galaxy. Unit : Kg
for n from IMIN_NGC7541 to IMAX_NGC7541
do
rho_NGC7541[n] := rho_NGC7541[n] * alpha:
end do: # converting from mm on paper t

# oo Speed curve calculations -----

GalaxySpeedCalcul( M_NGC7541, rho_NGC7541, IMIN_NGC

IMAX_NGC7541, LMIN_NGC7541, LMAX
LMINPL_NGC7541, LMAXPL_NGC7541,
HSPEED_NGC7541, ProgMode,
NBSTEP_NGC7541, NBTRAJ_NGC7541,
VO_NGC7541, DY_NGC7541, AXANG_NG
NGC_7541 theoretical speed_curve

HHHHHH R
HHHH R NGCT 331 #HHHHHHHIHH I
HHHHHH AR
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H oo Matter density values ---------
# Those values are read on a printed paper of the d
# matter of the galaxy. Hence their unit is the mm.

# Below values of matter density on paper for 0 < x
rho_NGC7331[1] := 145: rho_NGC7331[2] := 128:
rho_NGC7331[3] := 115: rho_NGC7331[4] := 97:
rho_NGC7331[5] :=85: rho_NGC7331[6] := 64:
rho_NGC7331[7] := 62.7: rho_NGC7331[8] := 54:
rho_NGC7331[9] :=48: rho_NGC7331[10] := 41.5:
rho_NGC7331[11] :=35: rho_NGC7331[12] := 30:
rho_NGC7331[13]:=25: rho_NGC7331[14] := 21.5:
rho_NGC7331[15] :=17.5: rho_NGC7331[16] := 15:
rho_NGC7331[17] :=11.5: rho_NGC7331[18] := 9.5:
rho_NGC7331[19]:=8: rho_NGC7331[20] := 6.5:
rho_NGC7331[21] :=4.5: rho_NGC7331[22] := 4:
rho_NGC7331[23]:=2.5: rho_NGC7331[24] := 1.8:
rho_NGC7331[25]:=1.5: rho_NGC7331[26] := 1.2:
rho_NGC7331[27]:=1: rho_NGC7331[28] := 0.6:
rho_NGC7331[29] := 0.3: rho_NGC7331[30] := 0.24:
rho_NGC7331[31] := 0.2: rho_NGC7331[32] := 0.16:
rho_NGC7331[33]:= 0.12: rho_NGC7331[34] := 0.113:
rho_NGC7331[35] := 0.11: rho_NGC7331[36] := 0.103:
rho_NGC7331[37] :=0.1:

IMIN_NGC7331 :=1: # First valid indice fo
IMAX_NGC7331 := 81: # Last valid indice fo

# Below are the values of matter density on the pap
# between 15 and 35 kpc. | see a straight line on t
# for x in this range of values.
for n from 38 to IMAX_NGC7331
do
rho_NGC7331[n] := (0.01-0.1)*(n-37)/(IMAX_NGC7331
end do:

LMIN_NGC7331 :=0: # Distance correspon
LMAX_NGC7331 := 33: # Distance correspon
LMINPL_NGC7331 :=0.01: # Best value for
LMINPL_NGC7331 :=0.1: # Best value for
LMINPL_NGC7331 :=0.2: # Min value for x

LMAXPL_NGC7331 := 17.5: # No more because pb with p
NPOLY_NGC7331 := 14: # Nb points for polynomial i
HSPEED_NGC7331 :=7: #F
M_NGC7331:=0.43*10**11 * MO : # NGC7331 cente
# No available measur
# With values below: calculation for around 20 hour
NBSTEP_NGC7331:=3600: # Nb of steps for sta
NBTRAJ NGC7331:=3000: # Nb of stars for sta
VO_NGC7331 := 280*10**3/kpc:  # Initial speed fo
DY_NGC7331:=1/200: # Sampling space p
AXANG_NGC7331:=0.72: # Angle of axis for pr

R Matter density unit conversion -----
alpha := 3.6*M0*10**9/145: # Ratio matter densit
# for this galaxy. Unit : Kg kp
for n from IMIN_NGC7331 to IMAX_NGC7331
do
rho_NGC7331[n] := rho_NGC7331[n] * alpha:
end do: # converting from mm on paper t
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H oo Speed curve calculations -----  —memeeeeee #

GalaxySpeedCalcul( M_NGC7331, rho_NGC7331, IMIN_NGC 7331,
IMAX_NGC7331, LMIN_NGC7331, LMAX _NGC7331,
LMINPL_NGC7331, LMAXPL_NGC7331, NPOLY_NGC7331,

HSPEED_NGC7331, ProgMode,
NBSTEP_NGC7331, NBTRAJ_NGC7331,
VO_NGC7331, DY_NGC7331, AXANG_NG C7331,
NGC_7331_theoretical_speed_curve );
# F.Lassiaille may 2010.

0.9
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APPENDIX 12 PIONEER ANOMALY BEFORE SATURN

HARR B HHHAHH R AR AR AR AR AR

CALCULATION OF PIONEER ANOMALY
BEFORE SATURN
FOR THE EIGTH PLANETS

HFHEHFEHH

# This MAPLE program is calculating the PIONEER ano
# before the location of Saturn, taking into accoun

# Kuiper belt
# AND
# Main belt of asteroids,

# supposing that Newton's law is perfect in the loc

# the Earth.

#

HHHHHHHHH
# The equation used is Om = sqrt(G(M+m)/x**3), whic

# classical equation for the rotational speed of a

# planets. We get also t = 2 Pi/Om, where t is the

# revolution period. Hence we get dt/t = %2 da/a, wh

# gravitational acceleration, because of the two eq

# above, and because the real acceleration <<a>> is

# proportional to the real gravitational constant <

# dt/t = dOm/Om = %2 dG/G = Y2 da/a.

# That's why is written below : evalf((1/2)*Da/an);

HHAHHHH AR R AR R AR

HIHHH R R
HiHHHHHHHHH AR Initialisations ######H#HH
HARH AR AR AR AR AR R AR

Digits := 50 : # Floating poin
unassign('x’): unassign('y'): unassign('z’): unassi
unassign(‘an’): unassign('Da’):

# oo Cosmological values -----------

# --- Constants ---

s:=1:

day := 24*3600:

km := 10**3:

kpc :=3.08 * 10**19 : # 1 kilo parsec expre
pc := kpc/1000 : # 1 parsec expres
mpc := 10**3 * kpc:

c :=3*10*8: # light

LY := 365 * 24 * 3600 * c: # 1 lighty

AU := 149597870 * km : # Astronomic
G :=6.6742867 * 10**(-11): # Gravit constant m3
rg := 473 * 10**18: # Ray of the
rg_last := 0.9 * 10**(-2) * rg: #
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HARH R HAHHT

HHHHFH

maly, #
t:

R H

ation of #

#

#
R
histhe #
couple of #
orbital #
ere aisthe #
uations #

#
<G>>: #

#

#
HHHBHHHHH R

HHHHH AR
HHHHH AR
HARHHHHHHHHAHH

ts precision.
gn(‘ar’):

#s.
#in sec.

#m.
ssed in meter.
sed in meter.

#m.
speed in m/s.
ear in meter.
al Unitin m.
kg(-1) s(-2).
galaxy in m.
Fitted value.
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# Distance of last galaxy's contri

et Solar system values -----------

# heliocentric gravitational constant inside the so

Gh :=(0.01720209895)**2 * AU**3 / day**2:

Mt ;= 5.97 * 10**24. # Earth

MO :=2 *10**30 : # Sun ma

RO :=MO * G/ c**2: # Half Schwarschild

# Semi-major axis of the planets:

xme := 57909176 * km: # Distance Me

xv := 108208930 * km: # Distance

xe :=149597887.5 * km: # Distance Ea

Xm := 227936637 * km: # Distance Mars

Xj ;= 778412027 * km: # Distance Jupi

XS := 1433449370 * km: # Distance Sat

Xu := 2876679082 * km: # Distance Ura

Xn := 4498253000 * km: # Distance Nep

rho0 := 0.003 * MO / (LY**3): # Matter density nea
tmme := 87.969257 * day:  # Mercury orbital per

tmv := 224.70079922 * day: # Venus orbital period.
tmm := 686.98 * day: # Mars orbital period. J

tmt := 365.25636 * day: # Earth orbital perio

tmj := 4332.820 * day: # Jupiter orbital peri
value.

tms := 10755.698 * day:
tmu := 30687.153 * day:
tmn := 60190.029 * day:

# Saturn orbital peri
# Uranus orbital peri
# Neptune orbital per

value.
Hoommmmmmme e Kuiper belt values -----------
xkmin := 30 * AU: # Kuiper min distance fro

xkmax =48 * AU: # Kuiper max distance
xkmean := (xkmin+xkmax)/2: # Kuiper mean distance

thetak := Pi*20/180: # Kuiper thi
xkthi := xkmean * thetak: # Kuip
Mk := 0.3 * Mt: # Kuiper
value.

VK := Pi*(xkmax**2 - xkmin**2) * xkthi: # Kuiper be
rhok := evalf(Mk/VK): # Kuiper belt matter d
#xKuiper := xkmin + xkmax: # If only Kuiper belt
xKuiper := 114*AU: # Fitted value for taking

# the scattered disk and
# oo Main belt values -------------
xmmin := 2.2 * AU: # Main min distance from
xmmax := 3.3 * AU: # Main max distance f
xmmean := (xmmin+xmmax)/2: # Main mean distance f
thetam := Pi*36/180: # Main thickness
xmthi := xmmean * thetam: # Main
Mm := 3.3 * 10**21:
Vm = Pi*(xmmax**2 - xmmin**2) * xmthi: # Main belt
rhom := evalf(Mm/Vm): # Main belt matter den
xMain := xmmin + xmmax: # Mi
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X0 :=xe: # This is the distance from the sun at
# gravitational heliocentric constant,
# exactly fitting Newton's law. This x
# correspond to the best value for min
# orbital periods for all planets.

HHAHHHH AR AR R AR
HHHHHHH#H##H##H Calculation of Lk, Kuiper symmetric con

HHAHHHH AR R AR AR
H oo Calculation of fmax ----------

Lk _on_Lg_max := (sqgrt(xkmax**2 - xkmin**2)/rg_last)
sqrt(rhok/rho0):

H oo - Calculation of Lk -----------

# Here is the final equation of the symmetric contr

# from the Kuiper belt:

Lk on_Lg:=Lk on_Lg _max * (2/Pi) * invfunc[tan]((2

TR R R R R R R R
HiHHHHHH#H##H Calculation of Lm, main belt symm contr
TR R R R R R R
Lm_on_Lg := (sgrt(abs((xmmax-x)**2 - (xmmin-x)**2))
sq
# Direct val
HHHHHHHHHH
HiHHHHHH###H Calculation of Ls, the total solar syst
HEHHHHEHHHHHHH# . Symmetric contribution ####H#H#H###
HHHHHHHHHH
Ls on_Lg:=Lk on_ Lg+Lm_on_Lg: # Addition becau
# numerous luminous points
x:=x0: #LmO_on_Lg: value of Lm where Gh is
LsO_on_Lg:=Ls _on_Lg:
unassign('x’):

HHAHHHH AR R AR AR
# Calculation of Ghp, the heliocentric gravitationa

# valid outside the solar system.

HHAHHHH AR R AR R AR

#----- Used method: iteration --------------------
Ghpmin := Gh/100:
Ghpmax := 100*Gh:
Ghp := Ghpmin:
for i from 1 to 100 do
unassign('x’): unassign('y'): unassign('ar'): una
unassign('Da’):

Rp := Ghp/c**2:

L1:=1+Ls on_Lg+ (1+Ls0 _on_Lg)*sqrt(8*Rp/
L2:=1+Ls on_Lg:

€c0s2:= 4*L.1*L.2/(L1+L2)**2: # Square of relativi
tg:=sqrt( 1/cos2 - 1) :  # Slope of space insi
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arr := - c**2 * diff(tg,x) * tg * (1 - tg**2)**(
# Newton
ann := Gh / x**2 : # Classical "Newton's

X := X0:

if(evalf(arr) > evalf(ann)) then

Ghpmax := Ghp:
Ghp := (Ghpmin+Ghp)/2:
else
Ghpmin := Ghp:
Ghp := (Ghpmax+Ghp)/2:
end if:
end do:
Ghp_iter := Ghp:

HHHHHHHHH
# Calculation the theoretical Pioneer anomaly f
TR R R R R R R R
unassign('x’): unassign('y'): unassign('ar'): unass
unassign('Da’):
Rp := Ghp/c**2:
L1:=1+Ls on_Lg+ (1+Ls0 _on_Lg) *sqrt(8*Rp/x)
L2:=1+Ls on_Lg:
cos2:= 4*L1*L2/(L1+L2)**2: # Square of relativi
tg:=sqrt( 1/cos2 - 1) :  # Slope of space insi
ar := - c**2 * diff(tg,x) * tg * (1 - tg**2)**(-3/
# Our "Newton's

an := Gh/x**2 : # Classical "Newton's
Da := ar - an: # Theoretical PI
X =AU *y:

HHAHHHHAHH AR AR AR AR
# Mercury

HHAHHHH AR R AR AR
print("Mercury relative error");

y := xme/AU: # Distance from Mercury to

an := Gh/xme**2: # Newton acceleration.
evalf((1/2)*Da/an); # Relat anomaly for orbital re

HHHHHH
# Venus

HHHHHH
print("Venus relative error");

y = XV/AU: # Distance from Venus to th

an := Gh/xv**2: # Newton acceleration.

evalf((1/2)*Da/an); # Relat anomaly for orbital re

TR R A R R R R R
# Earth

HHHHHHHHHH
print("Earth relative error");
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HHHHHHHHH
unction #
TR
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y = xe/AU: # Distance from Earth to th
an := Gh/xe**2: # Newton acceleration.
evalf((1/2)*Da/an); # Relat anomaly for orbital re
t := 365*24: # Nb of hours in a year.
Dt:=t* (1/2) * Da/an: # Nb of hours for anomaly
print("Earth error in hours (per year)");

evalf(Dt);

HHHHHH
# Mars

HHATH R R R
print("Mars relative error");

y .= xm/AU: # Distance from Mars to the

an := Gh/xm**2: # Newton acceleration.

evalf((1/2)*Da/an); # Relat anomaly for orbital re

HHHHHH
#HHH#HHAA# Calculation of Ls, the total solar syst
HHHHHHHH A Symmetric contribution #####H#H###
HHHHHH
Ls on_Lg:=Lk on_Lg: # No more main belt contr

# the location of Mars.
x:=x0: #LmO_on_Lg : value of Lm where Gh is
LsO_on_Lg:=Ls on_Lg:
unassign('x’):

HHHHHHHHHH
# Calculation the theoretical Pioneer anomaly f
HHAHHHH AR R AR AR AR
unassign('x’): unassign('y'): unassign('ar'): unass
unassign('Da’):
Rp := Ghp/c**2:
L1:=1+Ls on_Lg+ (1+Ls0 _on_Lg) *sqrt(8*Rp/x)
L2:=1+Ls on_Lg:
cos2:= 4*L1*L2/(L1+L2)**2: # Square of relativi
tg:=sqrt( 1/cos2 - 1) :  # Slope of space insi
ar := - c**2 * diff(tg,x) * tg * (1 - tg**2)**(-3/
# Our "Newton's

an := Gh/x**2 : # Classical "Newton's
Da := ar - an: # Theoretical PI
X =AU *y:

TR R R R R R R R
# Jupiter

TR R A R R R R R R R
print("Jupiter relative error");

y = Xj/AU: # Distance from Jupiter to

an := Gh/xj**2: # Newton acceleration.

evalf((1/2)*Da/an); # Relat anomaly for orbital re

HHHHH AR R
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# Saturn

HHATH R R R
print("Saturn relative error");

y = xs/AU: # Distance from Saturn to t

an := Gh/xs**2: # Newton acceleration.

evalf((1/2)*Da/an); # Relat anomaly for orbital re

HHHHHHHHH
# Uranus

HHHHHHHHHH
print("Uranus relative error");

y = xu/AU: # Distance from Uranus to t

an := Gh/xu**2: # Newton acceleration.

evalf((1/2)*Da/an); # Relat anomaly for orbital re

HHHHHHHHHH
# Neptune

TR R A R R R R R
print("Neptune relative error");

y = xn/AU: # Distance from Neptune to

an := Gh/xn**2: # Newton acceleration.

evalf((1/2)*Da/an); # Relat anomaly for orbital re
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APPENDIX 13 PIONEER ANOMALY BEFORE SATURN: OUTER

PLANETS
HARR B HHHAHH R AR AR AR AR AR
CALCULATION OF PIONEER ANOMALY

BEFORE SATURN
FOR THE FOUR OUTER PLANETS ONLY

HTHEHFEHH

# This MAPLE program is calculating the PIONEER ano
# before the location of Saturn, taking into accoun

# Kuiper belt
# AND
# Main belt of asteroids,

# supposing that Newton's law is perfect for a fitt

# in order to minimize the maximum yielded relative

#

HHHHHHHHHH
# The equation used is Om = sqrt(G(M+m)/x**3), whic

# classical equation for the rotational speed of a

# planets. We get also t = 2 Pi/Om, where t is the

# revolution period. Hence we get dt/t = %2 da/a, wh

# gravitational acceleration, because of the two eq

# above, and because the real acceleration <<a>> is

# proportional to the real gravitational constant <

# dt/t = dOm/Om = %2 dG/G = ¥ da/a.

# That's why is written below : evalf((1/2)*Da/an);

HHAHHHH AR AR R

HARH AR AR AR AR AR
HiHHHHHHHHH AR Initialisations #H####H#HH
HARR B HHHAHH R AR AR AR AR AR

Digits := 50 : # Floating poin
unassign('x’): unassign('y"): unassign('z’): unassi
unassign(‘an’): unassign('Da’):

# oo Cosmological values -----------

# --- Constants ---

s:=1

day := 24*3600:

km := 10**3:

kpc :=3.08 * 10**19 : # 1 kilo parsec expre
pc := kpc/1000 : # 1 parsec expres
mpc := 10**3 * kpc:

c :=3*10*8: # light

LY := 365 * 24 * 3600 * c: # 1 lighty

AU := 149597870 * km : # Astronomic
G :=6.6742867 * 10**(-11): # Gravit constant m3
rg := 473 * 10**18: # Ray of the
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HARHHHHHHHHAHH
HHHHHHHHHHHHH
HARHH R HHHH

ts precision.
gn(‘ar’):
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rg_last := 0.9 * 10**(-2) * rg: #
# Distance of last galaxy's contri

et Solar system values -----------

# heliocentric gravitational constant inside the so

Gh :=(0.01720209895)**2 * AU**3 / day**2:

Mt ;= 5.97 * 10**24. # Earth

MO :=2 *10**30 : # Sun ma

RO :=MO * G/ c**2: # Half Schwarschild

# Semi-major axis of the planets:

xme := 57909176 * km: # Distance Me

xv := 108208930 * km: # Distance

xe := 149597887.5 * km: # Distance Ea

Xm := 227936637 * km: # Distance Mars

Xj := 778412027 * km: # Distance Jupi

Xs := 1433449370 * km: # Distance Sat

Xu := 2876679082 * km: # Distance Ura

Xn := 4498253000 * km: # Distance Nep

rho0 := 0.003 * MO / (LY**3): # Matter density nea
tmme = 87.969257 * day:  # Mercury orbital per

tmv := 224.70079922 * day: # Venus orbital period.
tmm := 686.98 * day: # Mars orbital period. J

tmt := 365.25636 * day: # Earth orbital perio

tmj := 4332.820 * day: # Jupiter orbital peri
value.

tms := 10755.698 * day:
tmu := 30687.153 * day:
tmn := 60190.029 * day:

# Saturn orbital peri
# Uranus orbital peri
# Neptune orbital per

value.
Hoommmmmmmemeeeeeee Kuiper belt values -----------
xkmin := 30 * AU: # Kuiper min distance fro

xkmax := 48 * AU: # Kuiper max distance
xkmean := (xkmin+xkmax)/2: # Kuiper mean distance

thetak := Pi*20/180: # Kuiper thi
xkthi := xkmean * thetak: # Kuip
Mk := 0.3 * Mt: # Kuiper
value.

VK := Pi*(xkmax**2 - xkmin**2) * xkthi: # Kuiper be
rhok := evalf(Mk/VK): # Kuiper belt matter d
#xKuiper := xkmin + xkmax: # If only Kuiper belt
xKuiper := 114*AU: # Fitted value for taking

# the scattered disk and
H oo Main belt values -------------
xmmin := 2.2 * AU: # Main min distance from
xmmax := 3.3 * AU: # Main max distance f
xmmean := (xmmin+xmmax)/2: # Main mean distance f
thetam := Pi*36/180: # Main thickness
xmthi := xmmean * thetam: # Main
Mm := 3.3 * 10**21:
Vm = Pi*(xmmax**2 - xmmin**2) * xmthi: # Main belt
rhom := evalf(Mm/Vm): # Main belt matter den
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xMain ;= Xxmmin + Xmmax: # Mi

HHH R R R R R R R R R R R R
HH SR R R R R R R R R R R R
#HittHHHHHHHH#HHH# Calculation of the best value for x0

HHH R R R R R R R R R R R
HH SR R R R R R R R R R R R

Hoommmmm oo Ghp calculation --------
#ay**3 + by2+ cy + d = 0
a = 3*sqrt(2/z)/c:

b:=-1:

cc:.=0:

d := Gh:

A =Db/a:

B :=cc/a:

C :=d/a:

P :=B - A*2/3:

Q = (A127)*(2*A**2 - 9*B) + C:
R := Q**2 + (4/27)*P**3:
#R is negative.
u = (-Q/2 + (1/2)*sqrt(-R))**(1/3):
v = (-Q/2 - (I/2)*sqrt(-R))**(1/3):
j:=-1/2 + I*sqrt(3)/2:
y = 2% + j*v - A/3:
# Closest value from Gh value, from t
Ghp := evalf(y**2):

# oo Roughly Pioneer Anomaly calculat
#
AA = Ghp - Gh:

BB := (3*Ghpl/c) * sqrt(2*Ghp):

Da2 := (AA - BB/sqrt(x)) / x**2: # Approximated
anomaly.

an := Gh/x**2: # Newto
acceleration.

RelDa := Da2/an: # Relative approximated acce
anomaly.

# oo Pioneer Anomaly maximum as a fun

Xl := (25/16) * BB**2/AA**2:
amax := (AA - BB/sqrt(xl)) / xI**2:
#plot( abs(amax), z=xme..xt ); # Allways dec

Hoommmmmmeeeees Least square calculation ------
pow := 10: # Finally power 4 is better than square
best
# should be power infinite (maximum norm
# but power greater than or equal to 5 t
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# time to compute.

X, O

J S := evalf(S + abs(RelDa)**pow):
xs: S := evalf(S + abs(RelDa)**pow):
xu: S :=evalf(S + abs(RelDa)**pow):
X 1= xn: S := evalf(S + abs(RelDa)**pow):
unassign('x’):

S:
X:
X:

><

# oo Minimum of Least square sum -----

print("Least square function:");

plot( 10**45 * abs(S), z=10.389*AU..10.39*AU );
# After watching this,

xSmin := 10.39 * AU: # Min value of S is for

X0 := xSmin: # Let's calculate now with it, exact a

HHHHHHHHH
#HHHH A Calculation of Lk, Kuiper symmetric con
TR R R R R R R R
H oo Calculation of fmax ----------

Lk_on_Lg_max := (sqrt(xkmax**2 - xkmin**2)/rg_last)
sqrt(rhok/rho0):

Hoommmmem e - Calculation of Lk -----------

# Here is the final equation of the symmetric contr

# from the Kuiper belt:

Lk _on_Lg:=Lk on_Lg max * (2/Pi) * invfunc[tan]((2

HHHHHHHHHH
HHHHHH##H##H Calculation of Lm, main belt symm contr
HHAHHHH AR R AR AR AR
Lm_on_Lg := (sgrt(abs((xmmax-x)**2 - (xmmin-x)**2))
Sq
# Direct val
HHHHHHHHH
#HHH A Calculation of Ls, the total solar syst
HHHHHHHHHHHH A Symmetric contribution ####H#H#H###
HHHHHHHHHH
Ls on_Lg:=Lk on_Lg: # Addition because coming f
# numerous luminous points
x:=x0: #LmO_on_Lg: value of Lm where Gh is
LsO_on_Lg:=Ls _on_Lg:
unassign('x’):

HHAHHHH AR R AR R
# Calculation of Ghp, the heliocentric gravitationa

# valid outside the solar system.

HHAHHHH AR AR AR R R AR

#----- Used method: iteration --------------------
Ghpmin := Gh/100:

Ghpmax := 100*Gh:

Ghp := Ghpmin:
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for i from 1 to 100 do
unassign('x’): unassign('y'): unassign('ar'): una
unassign('Da’):

Rp := Ghp/c**2:
L1:=1+Ls on_Lg+ (1+Ls0 _on_Lg) *sqrt(8*Rp/
L2:=1+Ls on_Lg:
€c0S2:= 4*L.1*L.2/(L1+L2)**2: # Square of relativi
tg:=sqrt( 1/cos2 - 1) :  # Slope of space insi
arr ;= - ¢**2 * diff(tg,x) * tg * (1 - tg**2)**(
# Newton
ann := Gh / x**2: # Classical "Newton's
X 1= X0:

if(evalf(arr) > evalf(ann)) then

Ghpmax := Ghp:
Ghp := (Ghpmin+Ghp)/2:
else
Ghpmin := Ghp:
Ghp := (Ghpmax+Ghp)/2:
end if:
end do:
Ghp_iter := Ghp:

HHHHHHHHHH
# Calculation the theoretical Pioneer anomaly f
HHHHHHHHHH
unassign('x’): unassign('y'): unassign('ar'): unass
unassign('Da’):
Rp := Ghp/c**2:
L1:=1+Ls on_Lg+ (1+Ls0_on_Lg) *sqrt(8*Rp/x)
L2:=1+Ls on_Lg:
cos2:= 4*L1*L2/(L1+L2)**2: # Square of relativi
tg:=sqrt( 1/cos2-1):  # Slope of space insi
ar ;= - c**2 * diff(tg,x) * tg * (1 - tg**2)**(-3/
# Our "Newton's

an := Gh/x**2 : # Classical "Newton's
Da = ar - an: # Theoretical PI
X =AU *y:

HHATH R R R
#HHH A Calculation of Ls, the total solar syst
HEHHHHEHHHHHHH##HH# Symmetric contribution ####H#H#H###
HHATH R R R
Ls on_Lg:=Lk on_Lg: # No more main belt contr

# the location of Mars.
x:=x0: #LmO_on_Lg: value of Lm where Gh is
LsO_on_Lg:=Ls _on_Lg:
unassign('x’):

HRHHHH AR
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ssign(‘an’):

X):

stic operator.
de space-time.
-3/2):
corrected law.
acceleration”.

HHHHHHHHH
unction #
HHHHHHHHH
ign(‘an’):

stic operator.

de space-time.
2):

acceleration”.
acceleration”.
ONEER anomaly.

R
em HHHHHHHHIHHHH
R ]
R
ibution after

correct value

HHHH AR
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# Calculation the theoretical Pioneer anomaly f
HHHHHHHHH R
unassign('x’): unassign('y'): unassign('ar'): unass
unassign('Da’):
Rp := Ghp/c**2:
L1:=1+Ls on_Lg+ (1+Ls0_on_Lg) *sqrt(8*Rp/x)
L2:=1+Ls on_Lg:
cos2:= 4*L1*L2/(L1+L2)**2: # Square of relativi
tg:=sqrt( 1/cos2- 1) :  # Slope of space insi
ar ;= - c**2 * diff(tg,x) * tg * (1 - tg**2)**(-3/

# Our "Newton's

an := Gh/x**2 : # Classical "Newton's
Da = ar - an: # Theoretical PI
X =AU *y:

HHHHHHHHH
# Jupiter

TR R R R R R R R
print("Jupiter relative error");

y = Xj/AU: # Distance from Jupiter to

an := Gh/xj**2: # Newton acceleration.

evalf((1/2)*Da/an); # Relat anomaly for orbital re

HHHHHHHHHH
# Saturn

HHAHHHH AR AR AR AR AR
print("Saturn relative error");

y = Xs/AU: # Distance from Saturn to t

an := Gh/xs**2: # Newton acceleration.

evalf((1/2)*Da/an); # Relat anomaly for orbital re

HHAHHHH AR R AR AR R
# Uranus

HHAHHHH AR R AR AR
print("Uranus relative error");

y = Xu/AU: # Distance from Uranus to t

an := Gh/xu**2: # Newton acceleration.

evalf((1/2)*Da/an); # Relat anomaly for orbital re

TR R A R R R R R R R
# Neptune

TR R R R R R R R R
print("Neptune relative error");

y = xn/AU: # Distance from Neptune to

an := Gh/xn**2: # Newton acceleration.

evalf((1/2)*Da/an); # Relat anomaly for orbital re
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unction #
R
ign(‘an’):

stic operator.

de space-time.
2):

acceleration".
acceleration".
ONEER anomaly.
HHHHH R
HHHHHHHHHHHH RS
the sun in AU.
volution time.
HHHHH R
HHHHHHHHHHHH RS
he sun in AU.
volution time.
HHHHHHHHHHHH RS
HHHHHHHHHHHH RS
he sun in AU.
volution time.
HHHHHHHHHHHH RS
HHHHHHHHHHHH S

the sun in AU.

volution time.
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APPENDIX 14  JPL EPHEMERIDES ERROR

HARR B HHHAHH R AR AR AR AR AR

CALCULATION OF JPL MAXIMUM CUMULATED

RELATIVE ERRORS IN RIGHT ASCENSION, WHEN USI

SIMPLIFIED ALGORITHM OF JPL EPHEMERIDES

Those calculations are based on data coming from:
http://ssd.jpl.nasa.gov/?planet_pos

http://ssd.jpl.nasa.gov/txt/aprx_pos_pla

HFHEHFHFHFHFHFHHHH

# The calculated values are always expressed in ter
# relative errors for the periodic revolution times

# the eigth planets:

# RelatError = Lag/RevolutionTime

# where RevolutionTime is the time for one orbit re
# and Lag is the time for the yielded lag error dur

# one orbit revolution.

#

# For each planet, the value is a cumulative relati

# between :

- Newton equation calculated with semi major ax
planets's orbits: omega = sqrt(G(M+m)/a3),

and

- JPL full integrated algorithm ephemerides cal

HFHEHFEHFEHFHFHH

# Those values are, for each planet, the sum of the
# values of:

1) relative error between:
* Newton value,
and

* JPL value obtained with the JPL rotation
available in the table 1 of the JPL simp
algorythm. Those rotation speed values a
in table 1, column L, of:
http://ssd.jpl.nasa.gov/txt/aprx_pos_pla

2) relative error of this JPL simplified algori
integrated JPL algorythm. Those errors are av
http://ssd.jpl.nasa.gov/?planet_pos

HFHEFHFAHHFHHFEHEHFEHFHFHFHHR
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HIHHH AR AR HHHHH AR

HIHHHH AR R R HHHHH AR
HiHHHHHHHHH AR Initialisations ######H#HH HHHHH AR
HARH B HHHAHH R AR AR AR AR AR HARH R HAHH

B ommmmmmm e MAPLE ------=---==-- e #
Digits := 50 : # Floating poin ts precision.
unassign('x’): unassign('y'): unassign(‘ar'): unass ign(‘an’):
unassign('Da’):

et Cosmological values ----------- e #
day := 86400: # Number of sec in a day.

cty := 36525*day: # Number of sec in a century.
km := 1000:

AU := 149597870 * km : # Astronomic al Unit in m.
Gh :=(0.01720209895)**2 * AU**3 / day**2: # CODATA value.
G :=6.6742867 * 10**(-11): # Gravit constant m3 kg(-1) s(-2).
# oo Solar system values ----------- e #

# --- Distances of the planets from the sun

xme := 57909176 * km: # Distance Merc ure sun in m.
xv := 108208930 * km: # Distance Venu ssuninm.
xe := 149597887.5 * km: # Distance Eart h sun in m.
xe :=149597887.5 * km: # Distance Eart h sun in m.
Xm := 227936637 * km: # Distance Mars sunin m.

Xj ;= 778412027 * km: # Distance Jupi ter sun in m.
XS := 1433449370 * km: # Distance Satu rn sunin m.
Xu := 2876679082 * km: # Distance Uran us sun in m.
xn := 4498253000 * km: # Distance Nept une sun in m.
# --- Planets's masses

Mme := 3.3022 * 10**23: # Mercury mas s in kg.

Mv :=4.8685 * 10**24. # Venus mass in kg.

Me :=5.9736 * 10**24: # Earth mass in kg.

Mm := 641.85 * 10**21: # Mars mass i n kg.

Mj := 1.8986 * 10**27: # Jupiter mas s in kg.

Ms := 5.6846 * 10**26: # Saturn mass in kg.

Mu := 86.810 * 10**24: # Uranus mass in kg.

Mn :=102.43 * 10**24: # Neptune mas s in kg.

# --- Planets's rotation speed as seen from JPL tab les.

# Data source: http://ssd.jpl.nasa.gov/txt/aprx_pos _planets.pdf
Lme := 149472.67411175: # Mercury rotation speed. D egree/century.
Lv :=58517.81538729: # Venus rotation speed. Deg ree/century.
Le :=35999.37244981: # Earth rotation speed. Deg ree/century.
Lm :=19140.30268499: # Mars rotation speed. Degr ee/century.

Lj :=3034.74612775: # Jupiter rotation speed. D egree/century.
Ls :=1222.49362201: # Saturn rotation speed. De gree/century.
Lu :=428.48202785: # Uranus rotation speed. De gree/century.
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Ln :=218.45945325: # Neptune rotation speed. D

# --- Relative errors for Rigth Ascension,
# with the simplified JPL calculation (from JPL HTM
# Data source: http://ssd.jpl.nasa.gov/?planet_pos

dme2 :=15: # JPL approx err Mercury
dv2 := 20: # JPL approx err Venus RA
de2 := 20: # JPL approx err Earth RA
dm2 :=40: # JPL approx err Mars RA,
dj2 := 400: # JPL approx err Jupiter
ds2 := 600: # JPL approx err Saturn R
du2 :=50: # JPL approx err Uranus R
dn2 :=10: # JPL approx err Neptune

HHHHHH AR R
HitH A Calculation with JPL DATA ###HiH#
HHHHH AR R

print("Cumulated relative errors for orbital revolu
from JPL simplified algorythm"):

e Calculation procedure

PlanetMaxErrCalcul := proc( Planet, Dist, Mass, Rot
local RotSpeed0, RotSpeedl, dRotSpeedl, dRotSpeed

NbTurn, NbTurnYear, NbYear:

description " # Cumulative relative error";
print(Planet): # For the e
RotSpeed0 := sqrt((Gh+G*Mass)/Dist**3):  # New
RotSpeed1 := RotSpeed * (Pi/180) / cty: # Type
dRotSpeedl := (RotSpeedl-RotSpeed0)/RotSpeed0: #
NbTurnYear := RotSpeed1*365*24*60*60/(2*Pi):
NbYear := 2050-1800:
NbTurn := NbYear * NbTurnYear:
dRotSpeed2 := JPLErr/(380*60*60*NbTurn): #RelErr
dRotSpeed := abs(dRotSpeedl) + abs(dRotSpeed?2):
evalf(dRotSpeed); # Cumulative relative error b

end proc: # equation (with semi major a

# JPL simplified calculation.

e Planets Calculation

PlanetMaxErrCalcul( "Mercury”, xme, Mme, Lme, dme2
PlanetMaxErrCalcul( "Venus", xv, Mv, Lv, dv2)
PlanetMaxErrCalcul( "Earth”, xe, Me, Le, de2)
PlanetMaxErrCalcul( "Mars”, xm, Mm, Lm, dm2)
PlanetMaxErrCalcul( "Jupiter”, xj, Mj, Lj, dj2)
PlanetMaxErrCalcul( "Saturn”, xs, Ms, Ls, ds2)
PlanetMaxErrCalcul( "Uranus”, xu, Mu, Lu, du2)
PlanetMaxErrCalcul( "Neptune”, xn, Mn, Ln, dn2)
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APPENDIX 15 MATTER DENSITY AND SPEED PROFILES

# MAPLE program

# This program is plotting the galaxy speed profile
# for different global matter density profiles.

# It is used noticeably for the Tully-Ficher study.

Digits:= 30: m:=1: M:=7 * 10**36: G:= 6.6742867 *
c:= 3 *10**8: R:= M*G/c**2: kpc:= 3.08 * 10**19:

SpeedProfile := proc( betha )
local rho, L, e, cos2, tg, F, v:
unassign('x’):
rho := 1/x**betha:
L := r*sqrt(rho):
e:=sgrt(8*R/x) / (1 + L): # Famous "relat coe
cos2:=(1+e)/((1+e/l2)**2): # Square of rel
tg:= sqrt(1/cos2 - 1): # Slope of space i
F:=-m* c**2 * diff(tg,x) * tg * (1 - tg**2)**(
v:= sgrt(F*x/m): # Centrifugal force and tangent
plot(v, x=0.01*kpc..15*kpc); # Plotting from 1t
end proc:

SpeedProfile(2); # Betha =
SpeedProfile(2/3); # Bet
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APPENDIX 16 SPECIFIC MEASUREMENTS OF G

1) FIRST EXPERIMENTATION: SAME MEASUREMENT AT
DIFFERENT LOCATIONS

This experimentation is conceived for validatingiaralidating the gravitational model of the three
elements theory.
Its aim is to confirm an important prediction ofstimodel.

A) The idea

The idea is to explain the mystery of the dispasitthe measurements Gf the gravitational
constant.

Indeed, this mystery is explained by an applicatibthe equation o obtained by this model.
This equation is predicting th& depends of the surrounding distribution of mati@ing the
measurement, along both sides of each "attradtied. IAn attracting line is a straight line in spac
which connects 2 space points. Each of them mupaleof, respectively, each of the 2 attracted
masses.

The equation o6 is showing that th& value is depending of those attracting lines &edoresence
or absence of matter along those lines, on bo#ssid

For example, in the non-realistic but limit casgwf pointed masses, it exists only one attracting
line. If those objects are located exactly at #iaes altitude on earth, then this line is an hottiabn
line. Moreover, if those objects are located inttbétom of a valley, then this line is encounteramy
important quantity of matter on both sides (“ledtid “right”). This matter is the matter of the
surrounding mountains (on the left and on the jigbt the contrary, if those objects are located on
the top of a hill, then it is possible that thigatting line will not encounter any matter atcil
earth. Faraway, of course, this line will probabhcounter asteroids, planets, or celestial objects
such as stars or gas.

B) The value to be measured

The model is predicting a difference in Bevalue between those two cases.

The value of this relative difference is aroundd@.0This value is in accordance with available
experimental data.

Indeed, the greatest difference between the meh&uvalues is around 0.0065.

The second measured value (in the valley) is ptedito be weaker than the one measured with the
first measurement.

C) The experimentation

Hence a specific measurement is needed. This expetation is the following.

1) Realisation of an apparatus, such as the attgalimes between the attracting objects are
horizontal, as much as possible. An apparatus asithe one used by Cavendish in 1798
should be enough. It seems to be mandatory to laseabeam in order to measure the
angular deviation. This laser beam will reflectaohittle mirror attached to the pendulus
beam. One measurement consist of two distinct angaéasurements, one with, and
another without the presence of the attractingatbjeearby.
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2) Execution of two measurements, on distinct loost For example, one measurement
can be done in the bottom of a valley, and therathe at the top of a hill, or at the top of a
mountain pass. In the case of a pass, it will l®ited that the attracting lines are
encountering as less as possible the nearby masr{ttiracting lines perpendicular to the
top line of the pass). For the measurement dotigeibottom of a valley, it must be
ensured that the attracting lines are encounteniagnstains on both sides.

3) Only the relative difference of the two measuallies matters.
This implies that the apparatus is not requiredewery precise for an absolute
measurement db.

NO NO
mountains @+ _/ mountains

Greétér G

Mountains Mountains

Weaker G

D) Accuracy

A first experimentation might consists of only dzieg this difference between the two
measurements. If a difference is ever noticedgsyatically, then it will be possible on a second
step, to get an experimental estimation of the egtpa precision.

Concretely, a precision da of around 0.002 should be enough. Hence, thisldralows to detect

a relative difference of 0.004 between the two messents, which is less than the extreme value of
0.0065 above.

The apparatus is not required to be very precisarfi@absolute measurementGf
Indeed, only a difference between the two values ofust be detected.

2) SECOND EXPERIMENTATION: INTERACTION WITH THE
MILKY-WAY

This experimentation is the same as the first mmaplacing mountains by the Milky-Way galaxy.

As such, it is conceived for validating or unvatidg the gravitational model of the three elements
theory. Its aim is to confirm an important predictiof this model.

A) The idea
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Two measurements of G are executed. The only diifax between the two measurements is the
orientation of the apparatus around its verticediom fiber. The second measuremenGa$ done
with the apparatus oriented such as the two foligvatraight lines are equal.

0 The attracting line passing by the center of gyaefteach of the attracted and attracting
objects (for one couple of attracted and attractibgcts). Concerning the other couple,
its corresponding attracting line is usually pagaid the attracting line of the first
couple.

0 The straight line which is the intersection of tplane. The first plane is the horizontal
plane passing by the laboratory. The second pktteeiMilky-Way galaxy disc. In
other word, this line is the horizontal directidrtloe milky-way (at night) in the sky.

The first measurement & is done with the apparatus oriented such as theabove straight lines
are perpendicular.

B) The value to be measured

The model is not predicting any precise value lier difference oG between those two cases.

It should be tuned more with the help of some neoygerimental data in order to predict some
precise value here.

The second measured value (in the direction oMtiley-Way) is predicted to be weaker than the
one measured with the first measurement (perpeladitaithe Milky-Way) (if the two values are
different).

C) The experimentation

Hence a specific measurement is needed. This exgetation is the following.
1) Realisation of the same apparatus as for teedkperiment.
2) Execution of the two measurements describedabov
3) Only the relative difference of the two measwahlies matters.

This implies that the apparatus is not requiredewery precise for an absolute
measurement db.
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No galaxy o No galaxy
disc g ~ disc

GréaTér G

Galaxy disc Galaxy disc

Weaker G

A first experimentation might consist of only dedteg this difference between the two
measurements. If a difference is ever noticedgsyatically, then it will be possible on a second
step, to get an experimental estimation of the egtpa precision.

D) Accuracy

The apparatus is not required to be very precisari@absolute measurementGf
Indeed, only a difference between the two valueS ofust be detected.

3) THIRD EXPERIMENTATION: TESTING VIOLATION OF
LINEARITY AT EARTH SCALE

A) The idea

The idea here is not really to validate nor invaiélthe model. The aim is to search a violation of
gravitational forces linearity at earth scale.

Today, the model is not precise enough in ord@réalict the presence or absence of linearity
violation at Earth scale. Please refer to the aataiie end of appendix 17.

Today the model retrieves vector linearity when bommg parallel gravitational forces, if and only
if the contributions are combining themselves usirigquare root of the sum of the squares” rule.
But in the present document the model actually trsesidditive operator for combining Kuiper
contribution, with galactic-and-extragalactic camtitions. It uses also the additive operator for
combining stars contribution, with galactic-andragalactic contributions (for example). In
appendix 17, it is showed that all this is mandatororder to be consistent with experimental data.
But today there are not enough experimental datedar to state which operator must be used
between objects located at Earth scale. Therefioeanodel cannot state about linearity violation fo
gravitational forces at Earth scale.

That's why a dedicated experiment is interesting hi@ order to test the presence or absence of
linearity violation.

B) Done before?
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Of course the first action is checking wether arthes search has been done before.

C) The experimentation

A possible experimentation is the following.

1) Realisation of an apparatus, such as the attgalimes between the attracting objects are
quite (globally) horizontal.

2) Execution of the measurement®fs this configuration:Gz

3) Pulling up the torsion fiber, raising up thedrade (the attracted objects) over the

attracting objects. Execution of the measuremef of this configuration:Gg

4) Pushing down the torsion fiber, droping downlthé&ance (the attracted objects) below

the attracting objects. Execution of the measure¢mi@ in this configuration:G4
5) Possible results predicted by the model :

. Gz — Gg — G4 no violation,
- G, <G, <G ifviolation of additivity.

This means that any other order between those @&sa predicted, by the model, has being
impossible.
Ihz
h1
hs --

D) Accuracy

The apparatus is not required to be very precisarf@absolute measurementGf
Indeed, only a relative difference Gfmust be detected.

4) FOURTH EXPERIMENTATION: TESTING VIOLATION OF
LINEARITY AT LABORATORY SCALE

A) The idea
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The idea here is the same as for the third expatime

Here the aim is to search for a linearity violatafrgravitational forces at laboratory scale.
Today, the model is not precise enough in ord@réalict the presence or absence of linearity
violation at laboratory scale. Please refer toatray at the end of appendix 17.

That's why a dedicated experiment is interesting hi@ order to test the presence or absence of
linearity violation.

B) Done before?

Even more than for the third experiment, the fastion is checking wether or not this search has
been done before.

C) The experimentation

A possible experimentation is the following.

1) Realisation of an apparatus, such as the attgalimes between the attracting objects are
quite (globally) horizontal.

2) Execution of the measurement®fs this configuration:Gl

3) Adding another attracting sphere behind eadmahettracting sphere. The exact location
for those added spheres is described by the figei@v. Execution of the measurement of

G in this configuration:GZ

4) Possible results predicted by the model :

. Gl :Gz no violation,

- G, <G, itviolation of additivity.

This means thaGl > Gz is predicted, by the model, as being impossible.
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On the left : first measurement, measured vérﬂp.

On the right : second measurement, measured \glgle

Details of the specific configuration during thesed measurement.

Frédéric LASSIAILLEDO 2011 Page 133



Frédéric LASSIAILLEs 2011 Page 134 18/11/2013

D) Accuracy

The apparatus is not required to be very precisari@absolute measurementGf
Indeed, only a relative difference Gfmust be detected.

4) CONCLUSION

It seams that these experimentations are reallglsias compared to the one executed today for the
measurement db (using for example interferometry or sophisticgpeddulus).

The priority for executing those experiments isftiwing (from the most important to the less
important).

0 Second experiment

o Fourth experiment

0 Third experiment

o First experiment.
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APPENDIX 17  WHICH OPERATOR IN WHICH CASE

This appendix is modifying each programs or cakois in order to check the “square root of the
sum of the squares” operator, in place of the adaperator. That is: testing if the addition ntigh
be replaced by the “square root of the sum of thmes” operator.

Let’s remind that this operator is the only onesistent with an additive behaviour of the
gravitational force vectors.

1) GALAXY SPEED PROFILE MODIFIED PROGRAM
Digits:= 30: m:=1: M:=7 * 10**36 : G:= 6.674286720**(-11): c:= 3 * 10**8:

R:= M*G/c**2: kpc:= 3.08 * 10**19 : # Initialisations.

r=1*Kkpc: # Value fittedqgressively in order to obtain the best possibteaurve.
e:= sqrt(8*R/x) /sqrt(1 + (r/x)**2) : # “relat coefHERE IS THE MODIFICATION
cos2:=(1+e)/((1 +el2)**2): # Square of thlativistic operator.
tg:=sqrt( 1/cos2-1): # Slodespace inside space-time.
F:=-m* c**2 * diff(tg,x) * tg * (1 - tg**2)**(-3 /2) : # Our "“Wion’s law”.
FN:=m * c**2 * R/(x**2) : # CGlesl “Newton’s law”.
vi=sgrt( F*x/m): # Centrifugal foraed tangential speed v.
vn:=sqrt( FN *x/m): # The same foisslaal Newton’s law.

plot([v(x),vn(x)], x=1*kpc..15*kpc, color=[red,blJestyle=[line,line], numpoints=1000);
# Plotting from 1 to 15 kpc.
RESULT

30004

20004

10004

o 1e+20 Ze420 Je420 de+20

X

CONCLUSION
This “new” operator yields a less flat curve, wt tvhole curve shape is still consistent with
experimental data.
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2) PIONEER ANOMALY MODIFIED PROGRAM
The modification is applied on appendix 3. The rfiodtion is the following, warning it has to be

executed twice.
Old code:
Lk_on_Lg_max := (sqrt(xkmax**2 - xkmin**2)/rg_l&s* sqrt(rhok/rho0):

L1 : 1+ 'I:k'_on_Lg + (1 + LkO_on_Lg) * sqrt(8*Rpk
L2:=1+Lk on_Lg:

New code, first modification (Kuiper belt, and galawith square root combination):
Lk_on_Lg_max := (sqrt(xkmax**2 - xkmin**2)/rg_l&s* sqrt(rhok/rho0):

Lk on_Lg max:=Lk on_Lg max*1:
# Other valtlean 1 has been tested: 1000, 0.1, etc ...

L1 : sqrt(1+ 'I._k_on_Lg**Z) + sqrt(1 + LkO_on_L¢2) * sqrt(8*Rp/x):
L2 :=sqrt(1 + Lk_on_Lg**2):

New code, second modification (sun, Kuiper beld galaxy with square root combination)
Lk_on_Lg_max := (sqrt(xkmax**2 - xkmin**2)/rg_l&s* sqrt(rhok/rho0):

Lk on_Lg_max =Lk on_Lg _max * 1:
# Other valtlean 1 has been tested: 1000, 0.1, etc ...

L1 :=sqrt(1 + Lk_on_Lg**2 + (1 + LkO_on_Lg**2) {8*Rp/x)):
L2 :=sqrt(1 + Lk_on_Lg**2):
New code, third modification (sun and galaxy witjugre root combination) :

L1 := sqrt(1 + (8*Rp/x)):
L2 :=1:

RESULT
First modification

Second modification
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Even when modifying the line <<Lk_on_Lg_max =Lk &g _max * 1:>> by
<<Lk on_Lg_max :=Lk on_Lg max * 1000:>>, or sonthey factor than 1000, the above
curves aren’t modified at all.

Third modification

CONCLUSION

This “new” operator yields a completely differeniree, which is completely inconsistent with
experimental data. It seams to be impossible, mthi® least, difficult to fit with experimental dat
curve by fitting the Kuiper contribution.
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3) SIDERAL GRAVITY MODIFIED PROGRAM

This modification is replacing the addition by tisguare root ot the sum of the squares” operator,
when combining those two contributions:

0 asymmetric contributions coming from a “Cavendibfeot” of the measurement Gf
apparatus,

o0 symmetric contributions coming from the stars ledaaround Earth.
This modification is applied on appendix 9 program:

Old code:
RelatAmpliG := 2 * RelatAmpli;

New code:
RelatAmpliG := RelatAmpli**2;

RESULT
"0 kpc"

"Ratio extragal/ga
IIOII
"Relative G error:

0.424742134271053740125666314930° 10

"0.5 kpc'

"Ratio extragal/ga
16.0000000000000000000000000
"Relative G error:
0.00035474887796452679429035776:

"1 kpc"

"Ratio extragal/ga
8.00000000000000000000000000
"Relative G error:
0.000027867331429523835889644966¢

"2 kpc"
"Ratio extragal/ga

4.00000000000000000000000000
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"Relative G error;

0.265463833919408587578541446834 10

"4 kpc"
"Ratio extragal/ga
2.00000000000000000000000000

"Relative G error:

0.344041128759553529501789715094° 10

CONCLUSION

L,

This “square root ot the sum of the squares” opendelds a value forL— equal to more than 16.
¢]

Indeed, this value of 16 yields a relati@esrror equal to 0.035 %, which is closed to experital

data (0.054 %).

But thisLi value is not consistent with experimental datdoasiey of the galaxies inside their
¢]

groups (see below).

Therefore, there are two possibilities:

o0 either the used operator is the addition. In thse¢ the combination between the
symmetriccontributions coming from the stars and the asytrimeontribution coming
from the “Cavendish object” can explain sideraMisa But in this case, the
contribution between thesymmetricontributions coming from the stars and the
“Cavendish object” is also an addition. And thislglis an impossible result (see
appendix 18, sideral gravity). Therefore, the addibperator seems to be impossible
here,

o or the used operator is the “square root of the stithe squares” operator. In this case,
sideral gravity can’t be explained by the combimatbetweersymmetriacontributions
coming from the stars and the asymmetric contrdsutioming from the “Cavendish
object”. Sideral gravity in this case might be expéd by a slight violation of
gravitional forces linearity. This violation mightmes from a violation of the “square
root of the sum of the squares” operator usinghesis shown in appendix 18).
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4) VELOCITIES OF THE GALAXIES INSIDE THEIR GROUPS
The modification is the following.

Old calculation:

c* c*
G= 5= 5
S (o)
o X
L G

L_g = /az -1 = 2.1 using% =10 which corresponds to some experimental data.

u

New calculation:

c’ c

- 2 2
SZE Ly + L
b X

L
S-Sy - 30 using = 10
LG G,

RESULT
Whatever is the operator used for combining gatamintribution with extra-galactic contribution,

the galactic contributiob, is always of the same order of magnitude as tha-@alactic

G=

contributionlL,.

So we suppose that this rule of the “square rotlh@isum of the squares” is valid for combining the
galactic and the extra-galactic contributions.

Therefore the sideral gravity analysis above shkbms% [0 16.From that we deduce:
¢}

2
& = 1+(—9J =10 which is inconsistent with experimental data.

G,

Indeed, this asymptotic value for this ratio isajez than 5 (experimental data). (Even an “additive

2
equation” yields hereG—2 = [1+—gj = 1.13 which is inconsistent also with experimental glata

CONCLUSION

The order of magnitude GEE ratio is of 1. This is mandatory as compared wiperimental data.

u
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4) RETRIEVING NEWTON'S LAW AND LINEARITY OF GRAVITA TIONAL FORCES
AT SHORT SCALES

The modification is the following.

Old calculation:
Fo= mC2d tan@) tang ) __ mMG

R Y 0
cos@ )= 2L1—“L1L2

2

L =L,+9(9
I-2 :Lu

8R
g(x) 0 Lu\/? This is the result.

R= MG/ @

With this equation for the asymmetric contributipiidras been calculated at the beginning of
chapter “CALCULATION OF THE SYMMETRICAL CONTRIBUTI®IS”, the following:

F = F +F,

Which is the additivity (and linearity) of gravitahal forces, when assymetric contributions are
combined using the “square root of the sum of theases” operator.

New calculation:

Fo= mC2d tan@ ) tang ) = - mMG
dx (1-tan2@r) S
cos@ )= “
L=y +g(x
L, =L,
Yields: tan@) = {Mj
4L,
and: g(x) [ ZQ(ZRJ

Now when combining two asymmetric contributionsthathis “square root of the sum of the
squares” operator we get:

1 1
2R ¢ 2R, ) _ —
g [ 2( j e [ 2(—} e = e"+ e
X, = X |%, X

withR =M, G/ ¢andR, = M, G/ &, with obvious notation. Hence:
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F 0 m_Czeie = —Xl_XFl+ —‘X2_>4F2
4 dx \ 8R \ 8R

After calculation. This result is different frometltorrect one, which is the following.
F = Fl +|:2 = LF})Z + gigez
(=9 (%~
With £being +1 or -1 wether the second object is resggton the same side (left or right) as the

first one, or not.

And now if the additive operator is ever used, thenget:
e= egt+e and after calculations:

v (2R, R, (RR} (4RE)
Tl At (e x- % (- ¥ x- k)

Once again, this is different from:
F = F +F

F D m_Czeie =
4 dx

RESULT
Inconsistency with additivity of gravitational fas.

CONCLUSION
Using the “square root of the sum of the squaretrator for combining symmetric and asymmetric

contributions yields an inconsistent result whemty to retrieve Newont’s law.
Therefore :

1) galaxy and extra-galactic symmetric contributiomken combined with any other
existing object asymmetric contribution, is alwagsnbined with an addition.

2) Asymmetric contributions must be combined eachrotht “square root of the sum of
the squares” operator in order to retrieve lingaoftgravitational forces. This is true at
least for short scaleFFor greater scales, there might exist a violationsing of this
operator. This should yield a violation of linegrdf gravitational forces.

Of course, the symmetric of asymmetric charactergdta contribution is not depending of the
object generating this space-time deformation pyapan “contribution”. As a result, between the
point 1) (galaxy scale) and point 2) (short scHie)addition operator is replaced by the “squaot ro
of the sum of the squares” operator. The locatiber& the replacement is done is still to be
determinated.
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3) CONCLUSION

Therefore, the combination between galactic coatigim, L, and extra-galactic contributionk,,
must be an additive operator. For the other possibibinations, the following array shows which

operator to use, when this is known.

Operator | Cavendish | Mountains | Earth | Sun and | Kuiper | Galaxy | Extra-
object* stars belt galactic
Cavendish v V1? V1? “Close ? + +
object (5%) to” v
(4%)
Mountains V? V? ? ? + +
Earth ? ? ? + +
Sun and ? + + +
stars (6%) (**) (**)
Kuiper ? + +
belt
Galaxy + n
(***)
Extra- +
galactic
Vv “Square root of the sum of the square” operatost be used.

+: Addition must be used.

*: A “Cavendish object” is for example a lead sph&r&60 kg, which has been used during
the Cavendisie measurement in 1700.

*x + better tha as seen from galaxy speed profiles, and + mangé&tonon fitted Pioneer
anomaly.

il + because there is a + for combining sun anaxyal

4*: Closed to/ because of Sideral gravity.

5*; Must be tested by a specific experimentation.

6*: Because of the Pioneer anomaly study.

Remarks

o

Frédéric LASSIAILLEO 2011

It appears from this array that, for long distantles addition is used, whereas for short
distances, the “square root of the sum of the sfliaperator is used. The shift between
the first operator to the second one is done soraexnin between, and this shifting
location is not precisely known. It should neeghacsfic experimentation for measuring
this shifting scale. (Strictly speaking not onlg tbcale, but also the energy density
matters).

The combination between mountains and Cavendigttsbmust be tested with a specific
experimentation; this one is testing symmetric ntains contributions combined with
Cavendish object asymmetric contribution. Referapgpendix 16.

Sun contribution is combined with an addition witle Kuiper belt of asteroids
contribution. This tends to shows that Sun contrdsuis only an onset deformation of
space-time, like galaxy and extra-galactic contrdms. The next step is to check wether or
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not this is the case also for some smaller obiietthe Earth. That's why the following
experimentation must be realized.

o The combination between Earth and a Cavendish oinjght be tested with a specific
experimentation (asymmetric contributions only)fdRe to appendix 16. This will detect a
violation in the additivity of these gravitatiorfakces. As such it will detect any violation
in using the “square root of the sum of the squiasperator for combining a Cavendish
object with Earth.

o For sideral gravity calculations, the additive @gter has also been used. But here a “square
root of the sum of the squares” would not allowsetiieve sideral gravity experimental
data. Hence, the order of magnitude for the redgaimplitude of5 should be squared, and
equal to the square of 0.054 %. This tends to shbatghere is a violation of gravitational
forces linearity at galaxy scales. This experimgomaaims to detect now such a violation
at earth scale.

Frédéric LASSIAILLEO 2011 Page 144



Frédéric LASSIAILLEs 2011 Page 145 18/11/2013

APPENDIX 18 CALCULATING THE VIOLATION OF GRAVITATIO  NAL
FORCES LINEARITY

This appendix is calculating the value of the Miola of additivity in the general case.
Here the violation is supposed to come from thetfzat there exists contributions coming from the

same side (from left to right, or from right totefand that there is, in this case,= g + g, in place of

e =,/ €+ ¢° (which would give a nearly perfect linearity).

It is supposed that three objects are aligned ersdéime straight line :

a. object 0 oimmass is located at=0 on thisOx straight line,
b. object 1 ofM; mass is located at >0 on thisOx straight line,

C. object 2 ofM, mass is located at, >0 or x, <0on thisOx straight line.

It will be calculated the gravitational resultimyé¢es atx=0.
The object 1 and 2 respectively bring the followaugtributions alon@x axis.

8 8R,
D _
X = X % %, =¥

g U

It has been calculated that, using = /e’ + g, the addition of the resulting gravitational fesc
is nearly retrieved:

F = R+F with a very good approximation.

F, andF, being respectively the gravitational forces exeligdbject 1 on object 0 and by object 2
on object O:

withe = +1if x, >0 ande = -1if x, <0. (Forces positives).

Now it will supposede = g+ g. The idea is to calculate the resulting violatidinearity.

_ 8R 8R
For any x we have e=g+cg [ + &
Oa=x) Ve X
_de 1 B8R 18R

3

3 3
dx 2()(1—X)2 2|X2—X12
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X— X

—ed—eD[\/BRl +£\/ SRZJE 8R13 +—1—\/@3
%= %)| 2 ;

_de 4R .. 4R ., RR e , 1

o (k= N A *(( X= ¥ I%—FJ
_m¢_de _ mMG  _ mMG M M, e , 1

T e T (e (ke G\/(&—@Iﬁ—*((%—a |5—I>J

(F is positive).
Now let's suppose that the studied case is a measant ofG. Hence object 1 is a “Cavendish
object” (located closed to object 0), and obje Bcated far away from object O.

The measurement of G consists in measufndorce. Hence we get:

MM, ( e . 1 J
oF _F-(F+F) VOo-Xe—AL(x= % [x- K
F F M,
(% =%’
AF M, (X e 2
E bt (8 e

AF &E(LLJ
FooyM, x| % [x]

AF (M

Becausex, << x,and x=0
F M, ||

Numerical application

1) Effect of the earth.
OF \/ 610° 0.3

F 160 6.5 16
4
AF 0 6 10 0.3 004216 0 416
F 160 6.516

Of course this is completely out of any consitewity experimental data.
But this means that here, even a weak violatiamef'square root of the sum of the squares”
operator might yield a strong violation of linegrdf gravitational forces.

2) Compensating effect if symmetrical objects.
Let’s suppose now that a measuremer® & done. The balance is supposed to be locatdiaeon
same horizontal plane as the center of gravithefattracting objects.
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If the attracting objects are symmetrical with espof the horizontal plan containing the attracted
objects (the balance), then this violation of lmigas compensating it self. Indeed, the extraextd
value to the left to right force is the oppositetud added value to the right to left force.

But in case of a non symmetrical objects, this censating effect is no longer there. Therefore, the
final result in this case might be different valdesG, depending of the attracting objects used.

For example, let’ suppose that the attracting dbgea cube, and if there is an errorl@f® for the

verticality of this cube. It will be supposed atbat the relative error coming from the violatidn o
linearity is not4 10 but% = 1.
In this case, the relative error for tBemeasurement is roughtly the following.
10°%r /2)r 12
% i %A—FF = 10° Wherer is the size of the cube.
r

This is consistent with experimental data. Revgrs&% = 0.7 107 on the final measurement

can be explained easily with a violation of grawitaal forces of% =7

Therefore, it has to be checked if yes or no, sueiolation of linearity between the earth and a
“Cavendish object” has been noticed somewherearmpést (in publications). A specific
measurement might be done (refer to appendix 16)

3) Sideral gravity.

0
&F g \/ 210" 03 = 3.0 10 With 2 10°kg = M, where M, is the sun mass.
F 160 138 3.08 16
Now this value is used for modification of the prag of appendix 9 in the following way.
Old code :
# 6) Calculation relative amplitude of G.
RelatAmpliG := 2 * RelatAmpli; # To be compared
# wid.054 %

New code :
# 6) Calculation relative amplitude of G (lineantiplation)
RelatAmpliG := (3 * 10**4 / NbStars); # To be compd

with 0.054 %

This modified program yields the following resuthang others:

"Ratio extragal/ga
2.00000000000000000000000000
"Relative G error:
0.593230521349582733819111691

Which is
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E:OG

G

It is much greater than 0.054 %, which comes frapeemental data.
The value of 2 has been used fqr/ L, which is consistent with the velocities of théagées.

This shows that, if a violation of the “square robthe sum of the squares” operator exists, then i
weak (for combining a neighbouring star contribntwith a “Cavendish object” contribution). This

allows to write a square root sign in the arrayated appendix 17.

4) Eclipse anomalies.

a) acceleration from the sun

M,G M,G I ,
F/im=—=—=— gravitation acceleration from the sun

(x=%" %

X1 = 1.496x16 km
M1 = 1.9891x18 kg™
G =6,67384 x 13* m® kg s2
1.9891 16" 6.67384 18
(1.496 16 16)°
_ 1.9891 6.26738410_3
(1.496

= 593 10° m/s2

F/m =

b) acceleration from the moon
M,G _ MG

(X2 _ X)Z X22

gravitation acceleration from the moon

F,/m=

X2 = 384399 km

M2 =7.3477 x 102 kg

7.3477 18 6.67384 16
(384399 18)°

7.3477 6.67384
%0
(384.399

33 10° m/s2

F,/m =

c) acceleration from Earth
MG _ M,G

(XO _ X)Z XZ

gravitation acceleration from earth

Fo/m=
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X = 6371.0 km!®

MO = 5.97219x10%* kgl®!

5.97219 16' 6.67384 18

2

(6371 10)

_ 5.97219 6.673845_07
(6373’

= 9.81m/s?

F,/m =

d) Eclipse anomaly from linearity violation

ED £ MaX, with £ =1 since it is a sun eclipse by the moon.
F M, ||
=1

X1 =1.496x18 km
M1 = 1.9891x18 kg™
X2 =384399 km

M2 =7.3477 x 102 kg

AF _7.3477 10*1.49610°10°
F 1.989110*° 38439490°

- \/ 7.3477 1.496

1.9891 384399 Positive, with forces all positives toward the sun

\/ 7.3477 1.496
1.9891 384399

13.810°

Therefore, the absolute positive value to be sabttd from earth acceleration is :

M,

e nfi

A
A [ 59310° 3.810°

1 22.510° m/s2

|A 0 2250 pgal
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FIGURES
Figure 1. Measured curve of the Pioneer anomalis fijure has been extracted from [1].
D CeToTo] o [T F- Y (= TN 7 RSP 4
Figure 2: First theoretical curve of the Pioneasraaly. X-coordinate is irAU, andy-
COOIAINALE IS IMMN/S2... it e e e e e e e e e e e e e e e e e aeeaernnnnnnes 6
Figure 3: Modeling of the symmetric contributiomdag from the Kuiper’s belt.................... 9..

Figure 4: Second theoretical curve of the Pioneenaly, taking into account the Kuiper’'s
belt with a modeling of its symmetric contributioms the relativistic operator.

X-coordinate is ilAU, andy-coordinate is inN/S2............cccceeevvvvvvveeeviiiieeen 10.
Figure 5: Location in space, of the propagatedesjiace deformation, generated by a

straight line lumiNouUs PoINt trajeCtory. ....cccceeciiiiiiee e 16
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