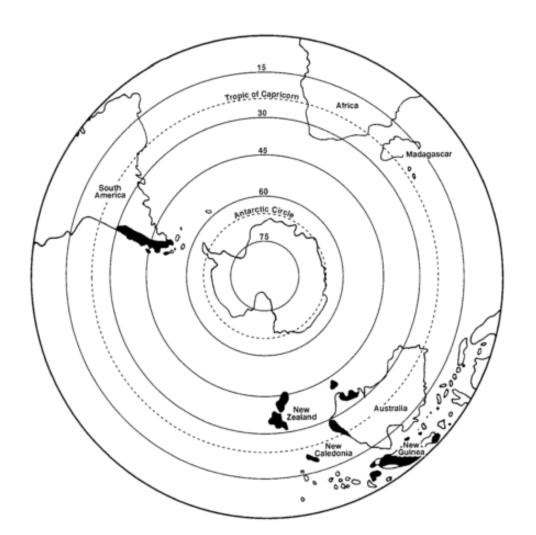


II Congreso Internacional de Ciencias Agropecuarias para la SOBERANÍA ALIMENTARIA

Con el Aval de:

13 al 15 de NOVIEMBRE 2019



Identificación y análisis de expresión de genes candidatos asociados a la autoincompatibilidad y su relación con el cruzamiento interespecífico: el caso de *Nothofagus obliqua* y *Nothofagus alpina*

Marlene Molina-Müller y Santiago C. Vásquez

Contacto: Dra. Marlene Molina Müller *PhD* marlene.molina@unl.edu.ec

Género Nothofagus

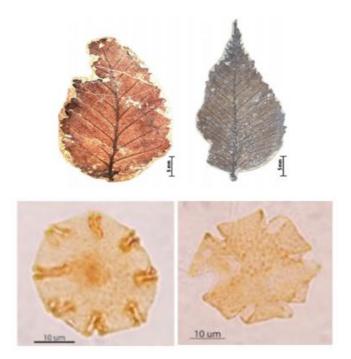


Figura 2: Macrofósiles y microfósiles de *Nothofagus* (Mod. Hinojosa *et al.*, 2015).

Familia: Nothofagaceae

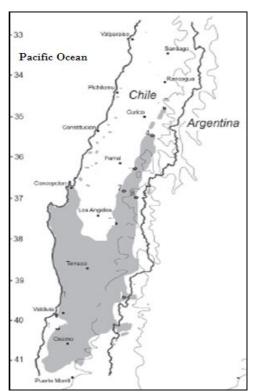
Orden: Fagales

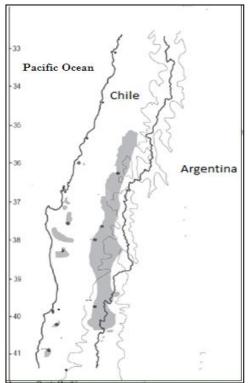
Figura 1: Distribución de especies del género Nothofagus (Manos, 1997).

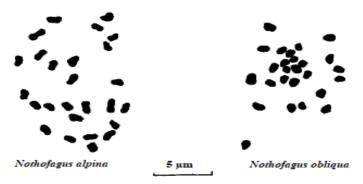
(Hill y Jordan, 1993; Harden, 2000; Moreira - Muñoz, 2011; Heenan y Smissen, 2013).

Nothofagus obliqua y Nothofagus alpina

Nothofagus obliqua (Mirb.) Oerst.


"Roble"




Nothofagus alpina (Poepp. & Endl.)Oerst.
Sinónimos

Nothofagus procera Oerst. Nothofagus nervosa (Phil) Krasser "Raulí"

Zonas de simpatría

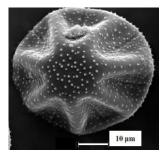


Figura 3: Cariotipo de *Nothofagus alpina* y *Nothofagus obliqua* (Mod. de Ono, 1977).

- Caducas
- Hojas simples
- Diclino monoicas
- Lophozonia
- Época de floración

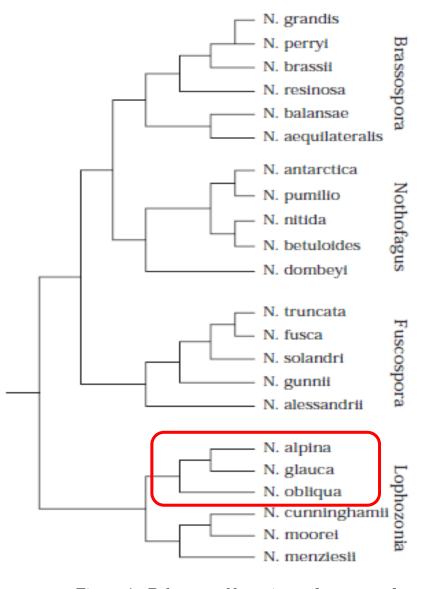


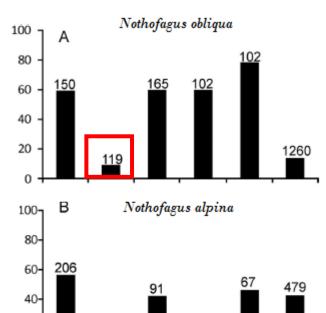
Figura 4: Relaciones filogenéticas de especies de la familia Nothofagaceae (Manos, 1997).

Hibridación

Aspectos reproductivos involucrados en el cruzamiento interespecífico entre N. obliqua y N. alpina

Nothofagus obliqua

✓ Diclino-monoicas


- ✓ Anemófilas
- ✓ Alógamas
- ✓ Dicogamia protándrica
- ✓ Autoincompatibilidad

Nothofagus alpina

Tabla 1: Resultado de tres experiment

Especie	Test
$N\!.$ obliqua	Autopoliniza
	Polinización
	Espontánea
Modificado de Rive	eros et al.(1995)

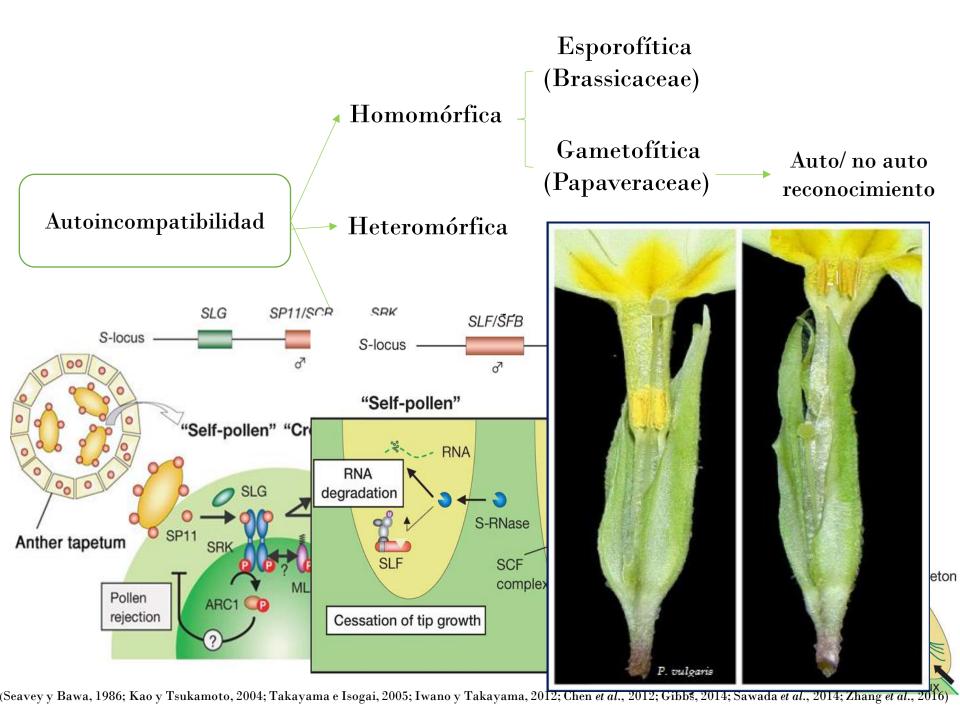
Tratamientos de polinización

N° de semillas	Semillas por fruto
6	0.016
266	0.351
132	0.084

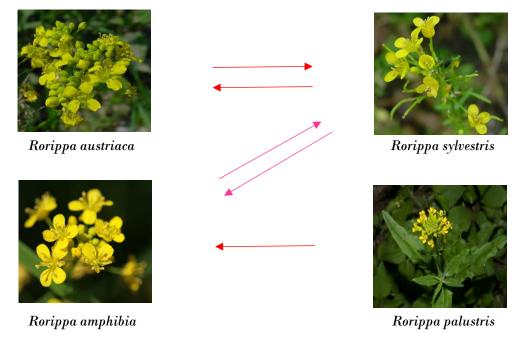
I: P. cruzada

Abierta

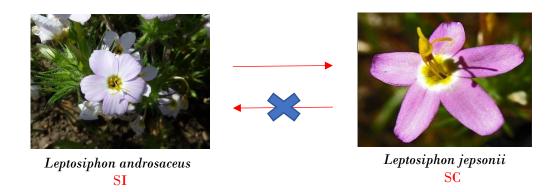
II: Autopolinización


III: P. cruzada.....Autopolinización

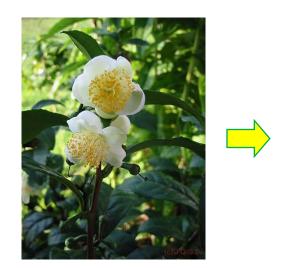
IV: Autopolinización....P. cruzada


V: P. cruzada + Autopolinización

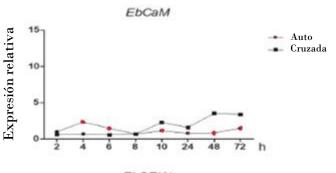
Modificado de Torres y Puntieri (2013)

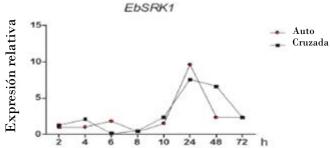

20-

Autoincompatibilidad e hibridación



(Bleeker, 2007)




(Lewis y Crowe, 1958; Onus y Pickersgill, 2004; Goodwillie y Ness, 2013; Baeck $\it et~al., 2015$)

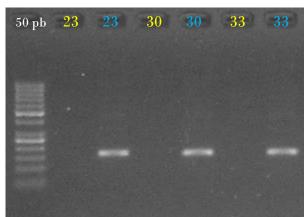
Erigeron breviscapus (Zhang et al., 2015)

Camellia sinensis L. (Zhang et al., 2016)

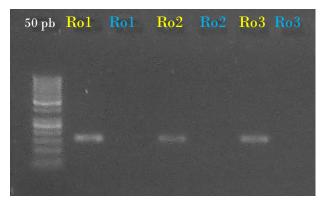
En búsqueda de la autoincompatibilidad

Expresión relativa de genes diferencialmente expresados en interacción polen – pistilo. SRK: S-locus receptor kinasa. CaM: Calmodulina (Modificado de Zhang et al., 2015)

Y: Yema floral
F: Filamentos
H: Hojas
O: Ovarios
P: Pétalos
Po: Polen
S: Sépalos
E: Estilo


Patrones de expresión del gen putativo S-Rnasa en diferentes tejidos de *C. sinensis* (Modificado de Zhang *et al.*, 2016)

OBJETIVOS

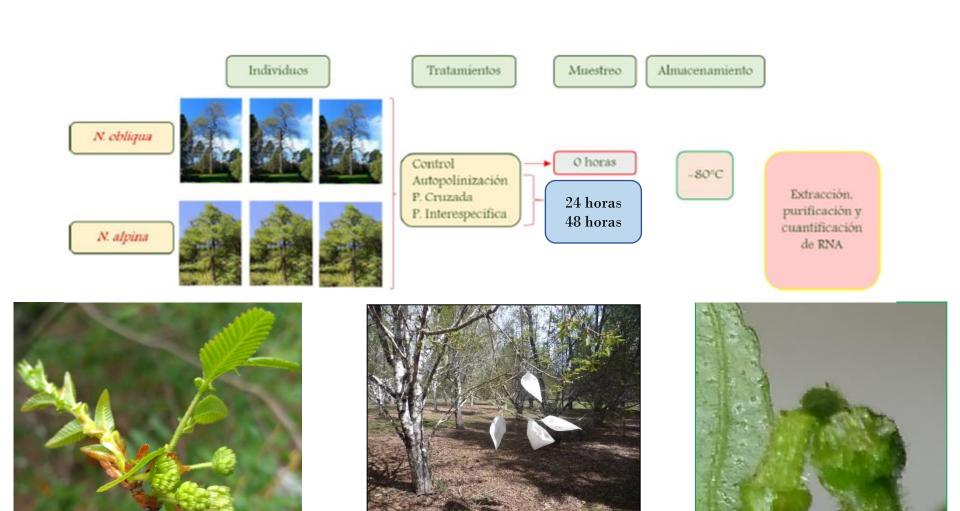

- ❖ Identificar genes candidatos asociados a la autoincompatibilidad en *Nothofagus obliqua* y *Nothofagus alpina*, y estimar su tipo de autoincompatibilidad.
- ❖ Definir los genes candidatos asociados a la autoincompatibilidad que podrían facilitar el cruzamiento interespecífico

Materiales y Métodos

Material Vegetal

Clones de *N. alpina* amplificados con partidor especie – específico para *N. obliqua* (amarillo) y *N. alpina* (azul)

Individuos de N. obliqua amplificadas con partidor especie — específico para N. obliqua (amarillo) y N. alpina (azul)



 $Noth of agus\ alpina$

Nothofagus obliqua

- Síntesis de cDNA
- Identificación de secuencias
- Identificación de gen constitutivo
- Análisis de expresión génica qPCR

Resultados y Discusión

Identificación de genes candidatos

Tabla 2: Secuencias base (CDS) y *contings* de *Nothofagus nervosa* de genes candidatos asociados a mecanismos de autoincompatibilidad.

Familia	Especies	ID GenBank	Función	Conting de Nothofagus identificado	Función de conting Nothofagus	Mecanismo de autoincompatibiidad asociado
Juglandaceae	J. regia	XM_018973593.1	CDPK	JT780999.1	Proteina kinasa	Esporofitica
	J. regia	XM_018986027.1	CDPK	JT777369.1	Proteina kinasa	Esporofitica
	J. regia	XM_018965512.1	CDPK	JT773327.1	Proteina kinasa	Esporofitica
	J. regia	XM_018954868.1	CDPK	JT772341.1	Proteina kinasa	Esporofitica
	J. regia	XM_018949840.1	Calmodulin -like	JT766647.1	Calmodulina	Gametofítica; Auto- reconocimiento
Rosaceae	Prunus mums	XM_016795910.1	F-box protein At3g23880 -like	JT783342.1	Dominio F-box	Gametofítica; No auto-reconocimiento
Solanaceae	Petunia axillaris	AB568404.1	S-locus linked F- box protein	JT766147.1	S-locus F-box	Gametofítica; No auto-reconocimiento
Rosaceae	Prunus dulcis	EU095947.1	S13-RNase	JT769423.1	RibonucleasaT2	Gametofítica; No auto-reconocimiento

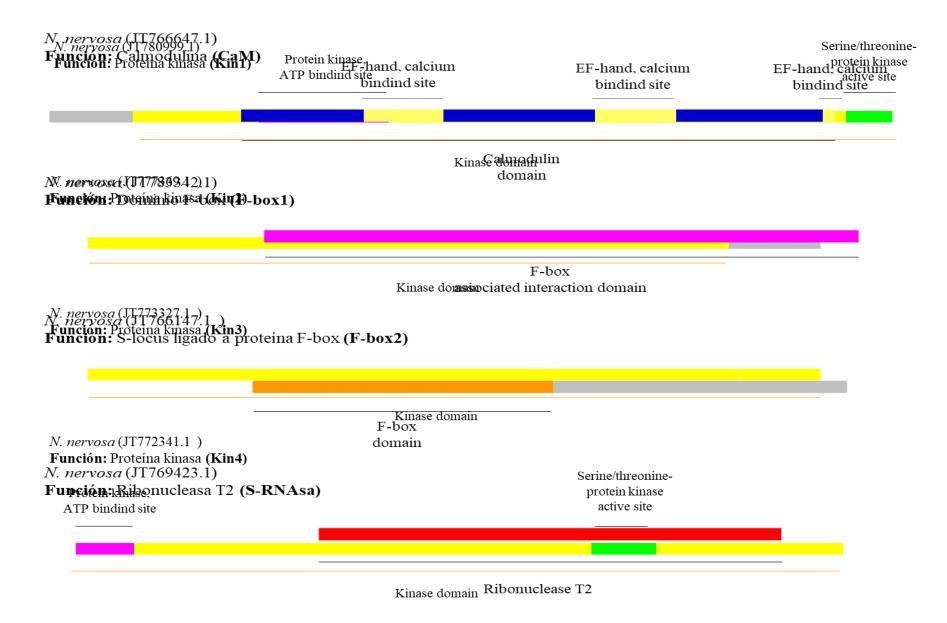


Figura 6: Representación gráfica de los componentes de las secuencias aminoacídicas de los conting de Nothofagus nervosa asociados a Gatiniodadikia (GaM); gfisheaxò g

Gen constitutivo depende del tejido evaluado

18S

GAPDH

 β -tub

Identificación y selección de EF1α como gen constitutivo para análisis de expresión de N. obliqua y N. alpina

GeNorm

Nothofagus alpina			Nothofagus obliqua		
Rank	Gene	M values	Rank	Gene	M values
1	$EFl\alpha$	0.576	1	$EFl\alpha$	1.016
2	ACT7	0.639	2	GAPDH	1.171
3	β-tub	0.714	3	β-tub	1.199
4	GAPDH	0.729	4	18S	1.339
5	18S	0.813	5	ACT7	1.758

RefFinder

Nothofagus alpina			Nothqfagus obliqua		
Rank	Gene	Geomean	Rank	Gene	Geomean
1	ACT7	1.19	1	$EFl\alpha$	1.32
2	β-tub	2.21	2	GAPDH	1.86
3	EFlα	3.08	3	18S	2.83
4	18S	3.34	4	β-tub	3.08
5	GAPDH	3.72	5	ACT7	4.73

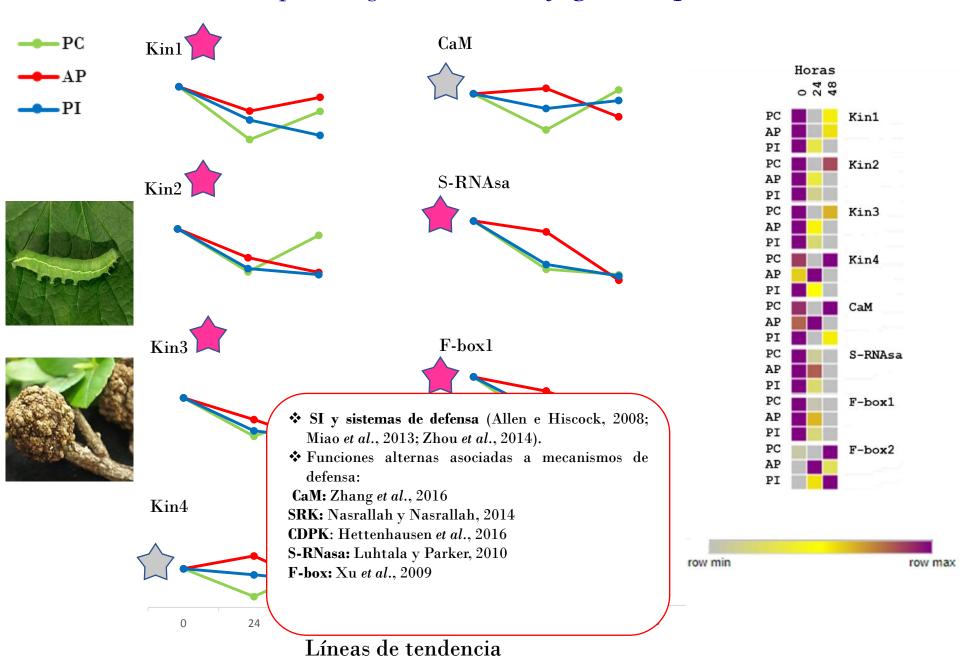
DeltaCt

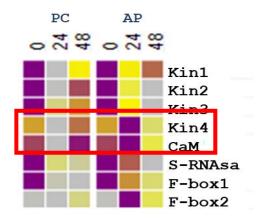
Nothofagus alpina			Nothofagus obliqua		
Rank	Gene	SD	Rank	Gene	SD
1	$EFl\alpha$	0.58	1	$EFl\alpha$	0.99
2	ACT7	0.64	2	GAPDH	1.15
3	β-tub	0.71	3	β-tub	1,16
4	GAPDH	0.73	4	18S	1.27
5	18S	0.81	5	ACT7	1.74

BestKeeper

Nothofagus alpina			Noth	ofagus obl	iqua
Rank	Gene	SD	Rank	Gene	SD
1	18S	0.75	1	β-tub	1.016
2	ACT7	0.85	2	$EFl\alpha$	1.171
3	$EFl\alpha$	1.01	3	GAPDH	1.199
4	β-tub	1.07	4	18S	1.339
5	GAPDH	1.09	5	ACT7	1.758

NormFinder


F


Nothofagus alpina			Nothofagus obliqua		
Rank	Gene	Stability	Rank	Gene	Stability
1	EFlα	0.143	1	EFlα	0.113
2	ACT7	0.266	2	GAPDH	0.527
3	β-tub	0.364	3	β-tub	0.549
4	GAPDH	0.394	4	18S	0.691
5	18S	0.474	5	ACT7	1.113

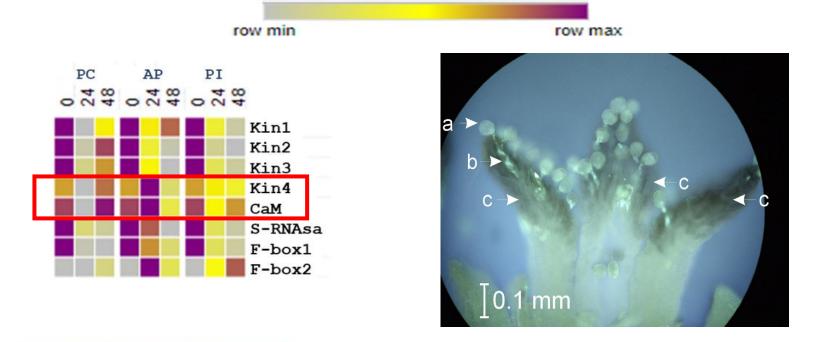
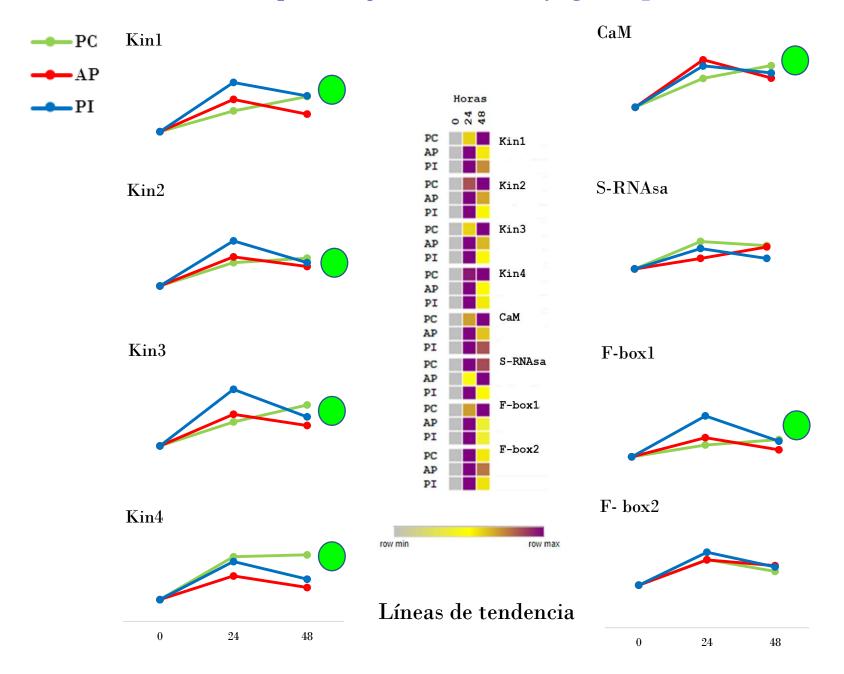
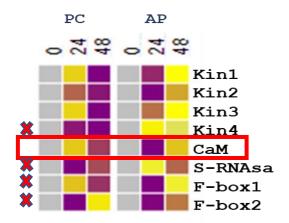

ando los valores de ciclo umbral (Cq) obtenidos en qPCR, considerando aplicados a *Nothofagus alpina* (rojo) y N. obliqua (azul).

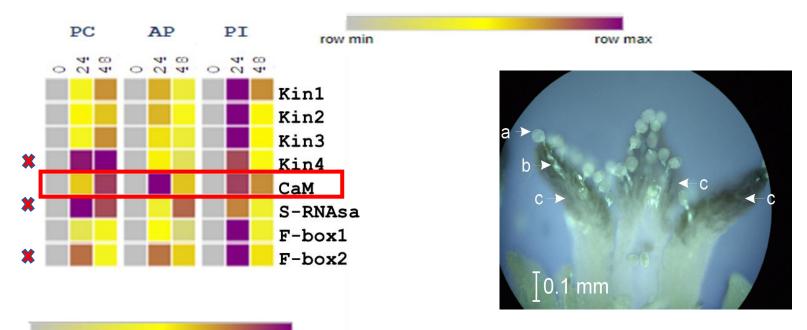
Figura 8: Estabilidad de la expresión de 5 genes de referencia candidatos calculada por GeNorm, DeltaCt, NormFinder, RefFinder y BestKeeper, en muestras obtenidas de tratamientos de polinización de N. alpina y N. obliqua (p \leq 0.01).

Expresión génica en Nothofagus obliqua

c) estigmas (Torres y Puntieri, 2013).

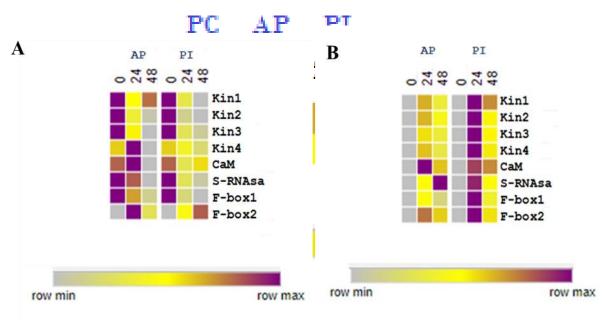

row max


row min


Figura 9: Germinación de granos de polen de N. obliqua en la superficie del estigma

de la flor pistilada 24 horas post-polinización. a) grano de polen, b) tubo polínico y

Expresión génica en Nothofagus alpina



row max

row min

Figura 10: Germinación de granos de polen de N. obliqua en la superficie del estigma de la flor pistilada 24 horas post-polinización. a) grano de polen, b) tubo polínico y c) estigmas (Torres y Puntieri, 2013).

Genes candidatos asdeiados antoiexióm Cathibidadir as (CalMe) ón con el proceso de hibridación entre N. obliqua y N. alpina

Nothofagus obliqua

Nothofagus alpina

(P<0.05; Test de Tuckey 95%. N. alpina (p: 0.0313); N. obliqua (p: 0.0415))

Conclusiones

- Los genes constitutivos o *housekeeping* se comportan de manera distinta según el tejido/ órgano en que se evalúa su expresión.
- \clubsuit El gen constitutivo más estable para análisis de expresión en tejido floral pre y post-polinización en N. obliqua y N. alpina corresponde al Factor de elongación 1 alfa (EF1 α).
- La identificación de genes ortólogos asociados a los mecanismos de autoincompatibilidad permitió identificar contings de Nothofagus alpina con funcionalidad asociada a estos genes.
- \bigstar Los patrones de expresión génica en N. obliqua y N. alpina son característicos en autoincompatibilidad gametofítica.
- ❖ El gen CaM asociado a la autoincompatibilidad gametofítica de N. alpina presentan una disminución de su actividad en el tratamiento de polinización interespecífica, provocando una posible vulnerabilidad en la barrera reproductiva.

