

I'm not a robot
reCAPTCHA

Continue

Transcript for UNIT 7 Similarity and Better Triangles OF CONTENT CONTENT COMMON CORE G-SRT. A.1a G-SRT. A.2 G-SRT. A.2 G-SRT. A.3 JOINT CORE BUSINESS G-SRT. B.4 G-GPE. B.6 G-SRT. B.5 G-SRT. B.4 COMMON CORE G-SRT. C.6 G-SRT. C.6 G-SRT. C.8 G-SRT. C.8 F-TF. C.8 823A Module 7 MODULE 16 Similarity and Transformation Hour 16.1 Hour 16.2 Hour 16.3 Hour 16.4 Enlargements. The supporting figures are similar using changes. Corresponding parts of similar numbers. AA Similarity of triangles. MODULE 17 Lesson on the use of similar triangles 17.1 Hour 17.2 Hour 17.3 Hour 17.4 Triangle Proportionality Theorem. Segment division in a given ratio. Use of proportional relationships. Similarity in the triangles on the right. . MODULE 18 Lesson with correct triangular 18.1 Hour 18.2 Hour 18.3 Hour 18.4 Hour 18.5 Ratio of tangy. Sine and co-compatibility relationship. . Special better triangles... and I do not know what to do. Solving problems with trigonometry Using Pythagorean identity. . 827 837 851 861 881 891 903 913 931 941 953 967 981 UNIT 7 Unit Pacing Guide 45-Minute Class Module 16 DAY 1 DAY 2 DAY 3 DAY 4 DAY 5 Lesson 16.1 Lesson 16.2 Lesson 16.3 Lesson 16.4 DAY 6 Module Review and assessment readiness module 17 DAY 1 DAY 2 DAY 3 DAY 4 DAY 5 Hour 17.1 Hour 17.2 Lesson 17.3 Lesson 17.4 Day 1 DAY 2 DAY 3 DAY 4 DAY 5 Lesson 18.1 Hour 18.1 Hour 18.2 Lesson 18.3 Day 6 DAY 7 DAY 8 DAY 9 DAY 10 Hour 18.4 Lesson 18.5 Module Review and Evaluation Readiness Unit Review and Assessment Readiness Day 6 Module Review and Evaluation Readiness Module 18 90-minute classes module 16 DAY 1 DAY 1 DAY 1 DAY 2 Day 2 Lesson 16.1 Lesson 16.2 Lesson 16.3 Lesson 16.4 Module For Review and Evaluation of Preparedness Module 17 DAY 1 DAY 2 DAY 3 Lesson 17.1 Lesson 17.2 Lesson 17.3 Lesson 17.4 Module Review and Evaluation Preparedness Day 1 DAY 3 DAY 4 DAY 5 Day 5 Lesson 18.1 Lesson 18.2 Lesson 18.3 Lesson 18.4 Module Review and Evaluation Readiness Lesson 18.4 Lesson 18.5 Unit Review and Readiness Assessment Module 18 7 823B Program Resources DEAL PLAN AND EXPLORE HMH Teacher App Access Complete Set of Teacher Resources and Online Online Devices. Schedule and manage classes, to-dos, and activities. Real-World Videos Involved students with interesting and relevant applications of mathematical content Module. Explore activities students interactively explore new concepts using different tools and approaches. ePlanner Just plan your classes, create and view tasks and access all program resources with your online, customizable planning tool. Professional Development Videos Authors Juli Dixon and Matt Larson model successful teaching practices and strategies in actual classroom settings. QR codes scan your smart phone to jump directly into your print book with online videos and other resources. DO NOT EDIT -Changes must be made to file into CorrectionKey=NL-A; CA-A Teacher's Edition Supports students with asking strategies, teaching tips, differentiated teaching materials, additional activities, and more. NO EDIT -Changes must be made to file into DODO NOT EDIT -Changes must be made to file into DODO NO EDIT -CHANGES MUST BE MADE THROUGH FILE INFO DODO NO EDIT -CHANGES MUST BE MADE FILE INFO CORRECTIONKey = NL-A; CA-A CorrectionKey=NL-A; The CA-A class straight edge draw segment draw a line segment bcc. . CCUse the straight edge 22.2 Equiles are osceles and equilateral 22.2 Triangles Common Basic Mathematics Standards when exploring the Onosceles Triangles integrate TECHNOLOGY Resource Locker G-CO. C.10 Discover discover the theoreme around the triangles. Vertex angle Vertex angle MP.3 Logic corners are the base of the lateral main corners. The corners that are the base of the asas are the bottom corners. DEAL with the work space in advance. angle, in the intended space. Use a straight line to draw the angle. AC Do Do Your Job Differently Every Time. is a difference in size each time. Mark your angle $\angle A$ as shown in the illustration. Mark your angle $\angle A$ as shown in the illustration. Reflective © Houghton Mifflin Harcourt Publishing Company Make a Guess Looking at your results, what conjecture made about the base angles, 2, 2. Make a guess when looking at your results, what kind of assumption can be made about base angles, $\angle C$? $\angle B$ and $\angle C$? The base corners are kongaad. With the help of a compass, place the point top intersecting with a compass, places the point on top of the top and draws a kaarka that intersects bbUsing Explain Explain 1 1 ProofEosceles osceles Vördhaarme Triangle triangle these sides at the corner. Mark corner points B and sides. Mark points B and C. andsConverse Converse and A in the Explore, made the assumption under the corners of the osceles triangle congruent. In Explore, you made the assumption that the base corners of the osceles triangle are in sync. This assumption proved that he could. This assumption can be proved in such a way that it can be said as aastheore. C C Equine triangle Theorem Isosceles Triangle Theorem If the two sides of the triangle are congruent, then corners on opposite sides When the two sides of the atriangle are compatible, then the two corners of the opposing side are in sync. Congruent. This theorem is sometimes called Base Corners Theorem marked as Base Corners This theorem is sometimes called Base Corners Theorem as TheTheorem and can also be noted when base corners are osceles triangle congruent. The equine triangle is a conglomerate. Module 22.2 must have EDIT-changes A; CA-No CorrectionKey = NL- made through lesson lesson 2 2 1097 1097 File info corners that have base side are the base corners. In this activity, you construct equilateral triangles and examine other possible characteristics/properties of these special triangles. How do you know triangles built onosceles triangles? 1. 1. How do you know that the triangles you built are triangles? —. The compass represents the length of the length $\angle A$; therefore $\angle A \cong \angle A$. The compass stands for equal $\angle A$ on both sides; therefore check the students' constants. Check the student's constants. B B opposite the vertex corner, there is a base. How could you draw equilateral triangles without using a compass? Possible answer: Draw $\angle A$ and drawing point B on one $\angle A$. Then use the point AB and figure point C to measure on the other side $\angle A$ so that $AC = AB$. Repeat steps A through D at least more times to save the data to the table. Make sure that steps A to D are correct at least twice more, and then save the results in the table. Make sure $\angle A \cong \angle A$ EERepeat module 22.2 1098 1098 lesson lesson 2 2 Date EXPLAIN 1 1 Proving the Equilateral Triangle Theorem and the Converse Essential COMMON CORE IN1_MNLESE389762_U8M2L2 IN1_MNLESE389762_U8M2L2 10971097 Question: G-CO. C.10 Relationships Special What are the Triangles? and the equilateral Prove theorems triangle is a congruent angle of the side of the triangle sides formed opposite at least called feet are the peak among the osceles Resource Locker HARDCOVER PAGES 1097,1100 HARDCOVER PAGES 1097,1100 PROFESSIONAL DEVELOPMENT SPECIALIST about triangles. The exploration of Explore An is osceles sides of the corners and feet vertex angle on the Onosceles two congruent triangles side. Feet Vertex angle triangle. Base angle. Base of the base corners. the main corners. other potential base and explore what are triangles are osceles they build special triangles. Angle, their effect to make properties / property use straightedge space in advance. Figure, work do your as shown in $\angle A$, Tick your corners Check students 19/14/12 10:19/12 10:19 12:10 P.M. Watch hardcover student edition page student edition page of this lesson. For this lesson, IN1_MNLESE389762_U8M2L2 IN1_MNLESE389762_U8M2L2 10981098 LearningProgressions Progressions Learning this Lesson, students will add their prior knowledge of onosceles and equilateral In this lesson, students will add their prior knowledge of onosceles and equilateral 4/19/14 12:10 4/19/14 12:10 10 P.M. Do your room down. Use a straight line to draw the angle. Mark your angle $\angle A$ as shown in the illustration. Connect vocabulary ask volunteers to define the onosceles triangle and have students give real world examples of them. If possible, show the class a baseball cap or other flag in the form of an equine triangle. Tell students that they will prove theorem of equilateral triangles and study their characteristics in this lesson. Klass al and Equilater 22.2 Equine Triangles Name Feet The angle formed from the feet is the vertex angle. What must be true about the triangles you build to be equid triangles? They must have two congrates. m $\angle B$ m $\angle B$ m $\angle C$ Vertex angle Congates are called triangle feet. INTERVIEW STRATEGIES Possible response to Triangle m $\angle A$ 70°; m $\angle B$ 55°; m $\angle C$ 55°. Possible response to triangle 1: 1. m $\angle A$ = 70°; m $\angle B$ = 55°; m $\angle C$ = 55°. In this activity, constant triangles explore other possibilities in this activity, you build equilateral triangles and explore other possible features/properties of these special triangles. the characteristics/characteristics of these special triangles. © Houghton Mifflin Harcourt Publishing Company Triangle 4 4 © Houghton Mifflin Harcourt Publishing Company View Engage section online. Discuss the photo by explaining that the instrument is a sextant and that a long time ago it was used to measure the rise of the sun and stars, allowing you to calculate its position on the Earth's surface. Then, check the hour performance task. Triangle Triangle 3 3 © Houghton Mifflin Harcourt Publishing Company PREVIEW: LESSON TASK Triangle 2 2 m $\angle A$ Base Corners Bin Corners Opposite Vertex Angle is the base. Laterally opposite the vertex angle is the base. Explain to your partner what you can derive about a triangle if it has two sides of the same length. In the equid area, there are opposite sides. In the equilateral triangle, all sides and corners are compatible, and each corner is 60°. The triangle triangle 1 1 formed is the vertex angle. The angle formed from the legs is the top angle. Language objective Important question: What are the special relationship angles and sides of osceles triangles? Feet Feat congruent sides are called triangle. The legs of the triangle are called. Studying common core DDOnosceles triangles is an equilateral triangle with at least two synchronizing sides. AnAn is an osceles triangle is an a triangle with at least two simultaneous sides. By studying mathematical practices, the Onosceles Triangles onosceles triangle is a triangle with at least two synchronized sides. Students have the opportunity to complete peer-to-peer triangle activities either in the book or online, protractor measured at each angle. In the Table Table in the Tk column, mark the protractor to measure each corner. Under the table, mark the dimensions for the triangle in the Triangle column. 1. Resource cabinet G-CO. C.10 Prove theorems about triangles. Explore C C Student is expected: COMMON CORE COMMON CORE EXPLORE A B B Important question: What special relationships between corners and sides are osceles Important question: What is the special relationship between corners and sides of osceles and equilateral triangles? and equilateral triangles? Date Important question: What are the special relationships between the angles and sides of osceles and the equilateral triangles? NO EDIT -Changes must be made to file into DODO NOT EDIT -Changes must be made to File Info CorrectionKey=NL-A; CA-A CorrectionKey=NL-A; CA-A Class Date 22.2 Equilateral and equilateral triangles DONOT NOTEDIT -Changes must be made through File FileInfo DO CorrectionKey = NL-A; CA-A CorrectionKey=NL-A; CA-A Does NOT CHANGE -Changes must be made to File InfoKey=NL-A; CA-A Lesson Name Base Base Corners PROFESSIONAL DEVELOPMENT TEACH Evaluation and Intervention in Mathematics On-Site Video Tutorials, featuring program authors Dr. Edward Burger and Martha Sandoval-Martinez, comes with each example of a textbook and give students step-by-step instructions and explanations of key math concepts. Interactive Teacher Edition Customize and present course materials for collaborative and integrated shaping assessment. C1 Lesson 19.2 Accuracy and Accuracy Evaluate 1 Lesson XX Reference Hour Linear, Exponential and Rectangular Models 19.2 Precision and Accuracy Teacher Support 1 EXPLAIN Concept 1 Explain Personal Math Trainer offers online practice, homework, ratings and intervention. Track students' progress through reports and notifications. Create and adapt specific lessons or assignments that are aligned with common basic standards. • Internship - With dynamic objects and tasks, students receive unlimited internships on basic concepts, supported by guided examples, step-by-step solutions, and video tutorials. • Evaluations - Choose course tasks or customize your basic course content, basic standards, difficulty levels and more. • Homework - Students can do online homework with a variety of problems, including the ability to enter phrases, equations and graphs. Let the system automatically go through homework so you can focus on where your students need the most help! • Intervention - Let Personal Math Trainer automatically provide a targeted, personalized intervention path for your students. 2 3 4 17 definition 2 question 3 Precision CompElEtNg E The SquarE with AVOID common errors Some students may not pay attention to whether b is positive or negative, since c is positive regardless of sign b. Can the student change the sign b to some problems and compare factory forms in both expressions. questioning strategies for perfect square trinomia, is the last term always positive? Explain. es, the perfect square trinomial can be either (a + b)2 or (a - b)2, which can be counted as (a + b)2 = 2 + 2ab = b 2 and (a - b)2 = 2 + 2ab = b 2. Either way, the last term is positive, to reflect the results of the The character (b) does not affect the character, because c = (b - 2) 2 and the non-zero number in the square is always positive. Therefore, c is always positive. c = (b - 2) 2 and a different number from zero to c = (b - 2) 2 and non-zero number 5 6 7 View Step by Step 8 9 10 11 - 17 Video Tutor Personal Math Trainer Textbook X2 Animated Math Solve Rectangular Factoring. 7x + 44x = 7x - 10 As you have seen, measurements are made with certain accuracy. Therefore, the x = reported value does not necessarily reflect the actual value of the measurement. For example, measuring 5 centimeters, which is, the control given to the nearest full unit can actually range from 0.5 units, from 4.5 centimeters, to 0.5 units but not more than 0.5 units, by 5.5 cm. The actual length l is within the range of possible values: Save and close centimeters. Similarly, the length of the nearest tenth may actually range from 0.05 units, which is less than the value given, to 0.05 units above, but not. So the length reported at 4.5 cm could actually be as low as 4.45 cm or as high as nearly 4.55 cm? Turn it to Work Look Back Focus higher-level thinking raise the bar for homework and practice, which includes higher-level thinking and mathematical practices for each lesson. Differentiated learning tools Support all learners with differentiated learning tools, including • Leveled practice and problem solving • Reading strategies • Success for English learners • Challenge Calculate minimum and widest possible area. Round your response to the nearest square centimetres. The width and length of the rectangle shall be 8 cm and 19.5 cm respectively. Prepare students for success in high-stakes tests for integrated math 2 custom for each module and item, find the actual range of length and width values in the rectangle. Minimum width = 7.5 cm and maximum width < 8.5 cm My answer Find the range of values of the actual length and width of the rectangle. Minimum length = 19.45 cm and maximum length < 19.55 Name Date LESSON class Accuracy and significant numbers 6-1 Success for English learners Linear functions Reteach Linear functions Reteach Linear measurement accuracy the smallest unit of time or the actual length and width of the rectangle. function is a straight line. fraction of the unit used. Ax + Author + C = 0 is the standard form equat on linear functi • A and C is turned on. Problem 1 Minimum area = Minimum width × number of the minimum length. A and B are not both zeros. • Variables x and y Select advanced measurement = 7.5 cm × 19.45 cm of exhibitors 1 is not multiplied with no denom 42.3 g of 42.27 g of intors, exhibitors or radical characters. nearest tenth of the nearest, the closest examples These are not a hundredth. linear functions: 2 + 4 = 6 variables x2 = 9 exponent x ≥ 1 xy = 8 and y multiplied by 42.3 g or 42.27 g in total 6 = 3 Since the hundredth of a gram is less than a tenth of a gram, 42.27 g x denominator x is more accurate. 2y = 8 y Exhibitor Problem 2 Above exercise, the location of the uncertainty line y = 5 y square root measurements resulted in different amounts of uncertainty calculated choose advanced measurement: 36 inches or 3 feet. Measurement. Explain how to solve this problem. Find out whether each function is linear or not. 14 = 2 x 2. 3y = 27. 14 = 28. 4x = 2 = 12 x = Reflect _____ Graph y = C is always horntal line. The graph is always a vertical line. x = C is item 7 Sent to notebook _____ The object is weighed on three different scales. The results are shown in the Find out table. Which scale is most accurate? Explain your answer. Measurement _____ When you decide which measurement is more accurate, what should you consider with the formula? Scale Tailor ratings and response to interventions to meet the needs of all your classes and students, including • Leveled modular quizzes • Leveled unit tests • Unit performance tasks • Placement, diagnostics, and quarterly benchmark tests Your turn y = 1 T x = 2 y = -3 x = 3 -3 823D Math Background COMMON CORE G-SRT. A.2 LESSONS 16.1 and 16.2 Transformation is a function that changes the position, size or shape of the drawing. In the process, the emphasis is on reflections that are most closely related to conjugation and similarity: reflections, translations, rotations and enlargements. However, it is important to understand that there are many other changes. Perhaps the easiest transformation is the transformation that maps each point itself. It's called an identity conversion. Another simple transformation is one that maps each point of origin. Expands COMMON CORE G-SRT. A.1 LESSON 16.1 Enlargement is a transformation that changes the size of a number, but not its shape. As such, enlargement is an example of a transformation which is not an isome (unless the expansion scale factor is 1). There is exactly one fixed point in each enlargement that is the centre of enlargement. Although enlargements do not retain distance, they retain a number of other characteristics. For example, enlargements maintain an angle measure. In other words, beneath the dilation, the angle of the pre-image is consistent with the corresponding angle of the image. Enlargement also maintains parallel lines. This is two rows that are parallel to the preimage is mapped to two parallel rows in the image. If two numbers are in sync, then there is an isometry that charts one number onto another. If the two digits are similar, one can be mapped to the other by a combination of dilation and isomemise. Enlargement is enlargement with a scale factor greater than 1. Reduction is an expansion with a scale factor greater than 0 but less than 1. It is also possible to extend the definition of dilation to allow a scale factor of 0 (in this case the entire pre-image 823E unit 7 has collapsed to one point, the centre of enlargement) and negative scale factors. Enlargement with a scale factor of k, where k > 0 is equivalent to a dilatation scale factor k followed by a turn in relation to the centre of 180° expansion. Similarly to COMMON CORE G-SRT. A.2 LESSONS 16.2 to 16.4 Recall that two digits can be defined as one time if there is an isoethics — a set of reflections, translations, and/or revolutions — that map one number to another. Similarity can also be defined as changes. In particular, the two digits are similar if they can be obtained by means of a combination of dilation and one or more isoethetics. Expansion will change the numbers by expanding or reducing them. Finally, it is worth noting that the similarity is equivalence; it is, the similarity is reflexive, symmetrical and transitive. For F 1, F 2 and F 3, F 1 F 2 (reflexivity); and if F 1 F 2, F 2 F 3, F 1 F 3 (transitivity). Triangle Proportionality COMMON CORE G-SRT. B.4. 17.1 The theorem of the proportionality of the triangle provides that, where the line is parallel to the side of the triangle and cuts the other two parts, it divides those parts proportionally. In $\triangle ABC$ with $DE \parallel BC$, AD and AE are the segments of AB and AC respectively. Then, AD and AE are proportional to DE and BC. Therefore, $\frac{AD}{DE} = \frac{AB}{BC}$. This is the proportionality theorem. • The hypotenuse height of the right triangle forms two triangles that resemble each other and the original triangle. • The height of the hypotenuse of the right triangle is the geometric mean of the length of the two segments of the hypotenuse. • The length of the right triangle leg is the geometrical average of the hypotenuse and the hypotenuse length of the right triangle. • Geometric mean of the adjoining hypotenuse and segment length of this leg. • Geometric mean of the adjoining hypotenuse and segment length of this leg. Theorem Pythagorean Theorem, one of the best-known relationships in mathematics, can track back almost as much as the recorded history itself. Most early occurrences of theorem occur in the form of Pythagorean triple (sets three zero integers a, b and c such as $a^2 + b^2 = c^2$). One example is a clay tablet known as Plimpton 322, which was written in Babylon about 1800 B.C.E., it contains 15 lines of numbers based on Pythagorean triplets. Such archaeological findings show that the relationship was known long before the Greek mathematician Pythagoras (approx. 582 B.C.E.-507 B.C.E.); it is thanks later to the work of Greek and Roman historians that the theorem has come to bear the Pythagorean name. Regardless of its beginning, the theorem continues to inspire both professional and amateur mathematicians because of its elegance and adaptability to various methods. In fact, Pythagorean proposal by Elisha Scott Loomis presents more than 350 different evidence of Pythagorean Theorem! Unit 7 823 UNIT 7 UNIT 7 Similarity and Right Triangles MODULE Similarity and Right Triangles in Mathematics Careers Unit Activity Preview 16 Similarity and Conversions MODULE 17 Using Similar triangles MODULE 18 Trigonometry Correct Triangles After completing this unit, students complete the mathematics career task using similarity to make calculation special effects engineer. Critical skills include modelling real-world situations and using similar indicators to find missing measurements. © Houghton Mifflin Harcourt Publishing Company • Photo authors: ©TriStar Pictures & Touchstone Pictures/Everett Collection, Inc. For more on career mathematics as well as various math recognition subjects, visit the American Mathematical Society at . The mathematics of career special effects engineers make movies come to life. With the use of mathematics and some creative camera angles, special effects engineers can make great things seem small and vice versa. If you are interested in a career special effects engineer, you should examine these mathematical themes: • Algebra • Geometry • Trigonometry Research other careers that require engineering to understand real scenarios. See career activity at the end of this unit. Unit 7 811 MONITORING YOUR LEARNING IN2_MNLESE389847_U7UO.indd 811 4/12/14 13:44 13:44 Before that in the entity After, if students understand: • parallel lines, intersections and angular relationships • cross lines and bisectors • slopes and equations of parallel and cross-facing lines • parallel, rectangular, diamond and square properties • theorems for parallelograms • Special triangles Students will find out: • similarity and enlargement • similarity • corresponding parts of similar numbers • prove similar triangles • Theorem of the triangular proportionality • segment sharing in a given relationship • geometric tools theories • Use of tangents, sine and cosine Students learn: • mid-and-infused corners • chords, secants, tangents and arches • segment lengths in circles • corners formed in circular sections • angst and circle area formulas • Sector area 823 Unit 7 Reading Start -Up Vocabulary Use words • basic idea to complete the web. Write the revised words on squares and add definitions. Translation Translation Translation All point indicator the same distance in the same direction. Images formed from rigid transformations are consistent with their preimages. Rotation of reflection Over the line maps each point to its image so that the line forms a point and the bisector perpendicular to that image. If the dot is on the line, then the picture is as well. The rotation moves around each point in the middle so that the distance from the middle does not change and all corners formed the point and its image are the same dimensions. Fill in the sentences with preview words. 2. 3. The shape of the transformation/enlargement image of the A(n) similarity is the same shape as the pre-image. The scale factor indicates the ratio of the lengths between the respective sides of the two similar numbers, geometric mean . x = a Proportions x b , x called Active Reading Review Words ✓ betweenness (intermediación) ✓ collinearidad ✓ congruent (congruente) ✓ hypotenusa (hipotenusa) ✓ feet (cateto) ✓ orient (orientación) ✓ parallel (paralelo) ✓ reflection (reflejo) ✓ rotation (rotación) ✓ transformation (transformación) ✓ translation (traslación) Do students stop working alone or with others. VISUALIZE VOCABULARY The word webgraphic helps students review the vocabulary associated with the changes. If time allows, brainstorm other connections between review words. The dilatation dilatación dilatación dilatación indirect measurement (medición indirecta) scale factor (factor de escala) Similarity transformation (transformación de semejanza) sysy (seno) tangente (tangente) trigonometric ratio (razón trigonómica) ARU VOCABULARY Use the following explanations to help students learn preview words. Enlargement or similarity transformation is a conversion that changes the size of the drawing, but not its shape. The image of enlargement is the intersection of the lines that connect each point of the image to the corresponding point in the pre-image. Indirect measurement is a measurement method using similar figures. A coefficient that is used to change one number to a similar number for each dimension is a factor of scale. © Houghton Mifflin Harcourt Publishing Company • Photo authors: ©TriStar Pictures & Touchstone Pictures/Everett Collection, Inc. For more on career mathematics as well as various math recognition subjects, visit the American Mathematical Society at . The mathematics of career special effects engineers make movies come to life. With the use of mathematics and some creative camera angles, special effects engineers can make great things seem small and vice versa. If you are interested in a career special effects engineer, you should examine these mathematical themes: • Algebra • Geometry • Trigonometry Research other careers that require engineering to understand real scenarios. See career activity at the end of this unit. Unit 7 811 MONITORING YOUR LEARNING IN2_MNLESE389847_U7UO.indd 811 4/12/14 13:44 13:44 Before that in the entity After, if students understand: • parallel lines, intersections and angular relationships • cross lines and bisectors • slopes and equations of parallel and cross-facing lines • parallel, rectangular, diamond and square properties • theorems for parallelograms • Special triangles Students will find out: • similarity and enlargement • similarity • corresponding parts of similar numbers • prove similar triangles • Theorem of the triangular proportionality • segment sharing in a given relationship • geometric tools theories • Use of tangents, sine and cosine Students learn: • mid-and-infused corners • chords, secants, tangents and arches • segment lengths in circles • corners formed in circular sections • angst and circle area formulas • Sector area 823 Unit 7 Reading Start -Up Vocabulary Use words • basic idea to complete the web. Write the revised words on squares and add definitions. Translation Translation Translation All point indicator the same distance in the same direction. Images formed from rigid transformations are consistent with their preimages. Rotation of reflection Over the line maps each point to its image so that the line forms a point and the bisector perpendicular to that image. If the dot is on the line, then the picture is as well. The rotation moves around each point in the middle so that the distance from the middle does not change and all corners formed the point and its image are the same dimensions. Fill in the sentences with preview words. 2. 3. The shape of the transformation/enlargement image of the A(n) similarity is the same shape as the pre-image. The scale factor indicates the ratio of the lengths between the respective sides of the two similar numbers, geometric mean . x = a Proportions x b , x called Active Reading Review Words ✓ betweenness (intermediación) ✓ collinearidad ✓ congruent (congruente) ✓ hypotenusa (hipotenusa) ✓ feet (cateto) ✓ orient (orientación) ✓ parallel (paralelo) ✓ reflection (reflejo) ✓ rotation (rotación) ✓ transformation (transformación) ✓ translation (traslación) Do students stop working alone or with others. VISUALIZE VOCABULARY The word webgraphic helps students review the vocabulary associated with the changes. If time allows, brainstorm other connections between review words. The dilatation dilatación dilatación dilatación indirect measurement (medición indirecta) scale factor (factor de escala) Similarity transformation (transformación de semejanza) sysy (seno) tangente (tangente) trigonometric ratio (razón trigonómica) ARU VOCABULARY Use the following explanations to help students learn preview words. Enlargement or similarity transformation is a conversion that changes the size of the drawing, but not its shape. The image of enlargement is the intersection of the lines that connect each point of the image to the corresponding point in the pre-image. Indirect measurement is a measurement method using similar figures. A coefficient that is used to change one number to a similar number for each dimension is a factor of scale. © Houghton Mifflin Harcourt Publishing Company • Photo authors: ©TriStar Pictures & Touchstone Pictures/Everett Collection, Inc. For more on career mathematics as well as various math recognition subjects, visit the American Mathematical Society at . The mathematics of career special effects engineers make movies come to life. With the use of mathematics and some creative camera angles, special effects engineers can make great things seem small and vice versa. If you are interested in a career special effects engineer, you should examine these mathematical themes: • Algebra • Geometry • Trigonometry Research other careers that require engineering to understand real scenarios. See career

Example 1 Application Features Dilations Exercises 12-13 Example 2 Finding Center and Scale Dilations Exercises 14-15 Similar? Why or why not? - yes, I don't know, when the numbers are in sync, there is a job of rigid movements that maps one to the other. Rigid movements are also similar changes, so the figures must also be similar. Lesson 1 832 Depth Knowledge (D.O.K.) x 4 A _ Module 16 2 35 Square A is an expansion square B. What is the scale factor? 1 5 35 a. _ = The answer is (c). The ratio is 7 4 28 b. _ 5 5 c. _ 4 d. 7 25 e. _ 16 Explore the characteristics of dilations to integrate mathematical practices to focus on Math Connections MP.1 If the two digits are compatible, they are also C 2 0 Practice C © Houghton Mifflin Harcourt Publishing Company No, the scale factor is 2. The centre of enlargement is (0,0). The dimensions from the centre of enlargement to A are twice the size of the centre of enlargement to A. The Commission has is greater than the pre-image so that the scale factor must be greater than 1. y Concepts and SKILLS COMMON CORE Mathematical Practices 1-5 2 Skills /Concepts MP.2 Recital 6-15 2 Skills / Concepts MP.5 Using Tools 16-17 2 Skills / Concepts MP.3 Logic 18 18 2 Skills / Concepts MP.4 Modeling 19 3 Strategic Thinking MP.1 Problem Solving 20 3 Strategic Thinking MP.1 Solving problems 18/04/14 Dilations 832 6. AVOID COMMON ERRORS _ Apply AC expansion with a scale factor of 2 and mid e. 7. _ 1 Apply geelac with scale factor _ 3 and mid point O. The pre-image, the scale factor must be greater than 1. O C C' B' A' B' C' B' B' A' 8. C' What happens when the triangle expands, using one of the peaks as the centre of expansion? 9th Draw an image of WXYZ. The centre of enlargement is O and the scale factor is 2. The sides of the triangles adjacent to the centre of enlargement are colinear. The third side of the preview and the picture is parallel. The peak used as the centre of enlargement is in the same place in both triangles. X' Y' X' Y O Z W' Z. Image ΔABC. The centre of enlargement is C and the scale factor is 1.5. 11. Compare enlargements with rigid movements. How are they alike? How are they different? Rigid movements maintain the angle measure, between them and the colinearity. Dilations retain all but distance. The expansion of the line segment (preliminary image) is the second line segment, the length of which is the basis of the scale factor and the length of the pre-image. B' B © Houghton Mifflin Harcourt Publishing Company C' C A' A' Determine whether the transformation of Figure A to Figure B at the coordinate level is enlargement. Check the ratio of the respective side lengths for enlargement. 12. 13. y 6 8 4 6 B 4 B 2 A 2 x 2 A 2 x 2 4 6 x 0 2 4 6 8 10 This is enlargement. The relationship corresponding to this is enlargement. The relevant 2. side length is _ 1 side length is _ 2 1 Module 16 IN2_MNLESE389847_U7M16L1 833 Lesson 1 18/04/14 7:53 PM Specify dilation of the mean and scale factor expansion. 14. 15. E A F D' C' B' A' F' D B' C O Scale factor is 1-2. The scale factor is 3 to 1. 16. You work in a photography shop. The customer has a picture that's 4.5 inches long. The customer wants a reduced copy image to match the space of the 1.8 inch long postcard. What scale factor should you use to reduce the image to the right size? 18. _ 2 = 5.45 in 2 A scale factor should be used. 5. _ length of the preliminary image | 5-2 | = 3 units. 14. C(15, 12) B(6, 12) 12. The height of the preliminary image is | 4-2 | = 2 units. 10 The height of the | 12-6 | = 6 units. 8 6 4 2 Image length | 15-6 | = 9 units. B(2, 4) C(5, 4) Module 16 IN2_MNLESE389847_U7M16L1 834 6 lengths is _ = . The scale factor is 3.1. 1 2 D(5,2) A(2,2) 2 3 9 The height ratio is _ = _ 1 3 D(15, 6) A(6, 6) x 4 6 8 10 12 14 16 18 834 © Houghton Mifflin Harcourt Publishing Company • Image Credits: ©Digital Vision/Getty Images 17. Computer Graphics Artist uses a computer program to enlarge the theme, as shown. What is the scale factor of enlargement? Lesson 1 18/04/14 7:53 Dilations 834 18. Explain the error, what mistakes did the student make when he tried to determine the center of expansion? Specify an expansion center. JOURNAL Can students write an explanation of how, given the triangle and its image under enlargement, you might want to use a ruler to find the scale factor of the expansion factor. P P O O R' Q' R' Lines were built < -> wrongly. P should pass through < -> points P and P' make up PP'. The lines must pass through the top and the corresponding peak to meet at the center of the expansion O. Q' F' H.O.T. Focus on higher-level thinking in the 19th century. Drawn DEF with peaks D (3, 1) E (3, 5) F (0, 5). Determine the Δ perimeter and area of the DEF. 10 The perimeter is 12 units, the area is 6 square units 8 b. Draws the image Δ DEF after enlargement with a scale factor of 3, with the center of the dilation being the origin (0,0). Determine the perimeter and area of the image. 6 E F 4 The perimeter is 36 units, the area is 54 units c. E' 14' 2' 2' perimeter Δ D'E'F' How is the scale factor related to ratios _ perimeter Δ DEF region D'E'F' and _ ? x Area Δ DEF 0 2 4 6 perimeter Δ D'E'F' 36 3 area Δ D'E'F' 54 9 = = = scale factor; = = = square perimeter of the scale factor Δ DEF 12 area Δ DEF 1 6 1 © Houghton Mifflin Harcourt Publishing Company 20. Draw Δ WXY peaks (4, 0), (4, 8) and (-2, 8). A. Dilate Δ WXY using factor _ 4 and origin in the middle. Then expand your image using a scale factor of 2 and the origin of the middle. Draws the final picture. B. Use the scale factors in part (a) to determine the scale factor that you can use to disperse Δ WXY, the origin of which is the center of the final image in one step. 1. 1 \times 2 = _ = the scale factor multiply the scale factors: _ 4 2 multiply the pre-image to draw the final image in one step. c. y 8 Y X 6 YX 4 Y'2 X' x -2 0 W' 2W 4W Do you get the same final image when you switch part (a) in the order of dilations? Explain your reasoning. 1. 1 1 = , this gives you the same scale factor Yes. If multiplied by 2 \times 4 2 because multiplication is a commutation. Module 16 835 835 Lesson 1 18/04/14 7:53 PM Lesson Performance Task integrate mathematical practices focus patterns mp.8 rectangle measuring 3 inches 6 inches is you have hung a sheet on the wall and lit sticker. Now you move your hands between the klee and the page, and you create a picture of the creation of the story on the page for the great fun of your audience. Compare and stand what you do with what happens when you draw a triangle expansion on the coordinate plane. Indicate how enlargements and hand puppets are similar and different. Discuss the measures that are preserved in hand-puppet projections and those that are not. Some terms you might want to discuss: projected on the wall. The image of the rectangle on the wall is an area of 200 square inches. What are the dimensions of the wall rectangle? Explain. 10 in. x 20 inches ; sample answer: Since the length of the smaller rectangle is twice as wide, the length of the larger rectangle must also be twice the length. The problem becomes one to find two digits in the ratio of 2:1 product to 200. Solutions 10 in. and 20 in. can be found using a think-and-check problem-solving strategy. • before image • image • expansion key • scale factor • transformation • input • output points that students can do: • the expansion of the coordinate level takes place in two dimensions, shadow can in three dimensions. INTEGRATE MATHEMATICAL PRACTICES Focus on Math Connections MP.1 Small rectangle is suspended halfway • If the shadow doll is projected to the surface, the angle dimensions are preserved. The lengths have not been preserved. The depth of the hands is not retained, but is converted into a two-dimensional image. © Houghton Mifflin Harcourt Publishing Company • Image Credits: ©Digital Vision/Getty Images Pre-image on your hands. The picture is a shadow. The centre of enlargement is the light source. • The scale factor of the shadow doll projection is the ratio of the measurement to the fan at a level parallel to the wall at a level parallel to the wall. Module 16 836 between the flashlight and the wall. It's parallel to the wall. Looking from the side, what number and special segment of this situation resembles? How could you use your knowledge of the segment to find unknown dimensions? Sample answer: The light of the flashlight, the side of the rectangle and the side of the shadow form a triangle with a central segment drawn. According to the theorem of the central segment, the side of the rectangle is half the length of the side of the shadow. Lesson 1 extension activity IN2_MNLESE389847_U7M16L1 836 Teams of three or four need a flashlight, index card and a way to support a card fixed away from the wall and parallel to it (one crew member can keep the card, keeping it as parallel as possible). One student holds the second measures the distance of the flashlight from the rectangle and the third measures the dimensions of the projected rectangle. Teams should make a measurement of the flashlight at different distances to the rectangle. They can then examine their data and assume the relationship between the dimensions of the object and the dimensions of that image when it is projected on the wall. 18/04/14 7:53 Scores Rubric 2 Points: The student's response is accurate and complete execution of tasks or tasks. 1 point: The student's response contains the characteristics of the appropriate response, but is invalid. 0 points: The student's response does not include the characteristics of the relevant response. Enlargements 836 LESSON 16.2 Name Proving Figures Are Similar In Using Changes Important Question: How Can Similarities Be Used to Show Two Figures Are Similar? A similarity conversion is a conversion in which the image has the same shape as the pre-image. Changes in similarity include reflections, translations, rotations and enlargements. The two plane numbers are similar if and only if one number can be mapped to another through one or more similarity conversions. G-SRT. A.2 In view of the two digits, use the definition of similarity of similarity changes to determine whether they are similar ... So is G-C. A.1 The network shows the map of the city park. Use the observing paper to confirm that the park elements are similar. Mathematical practice trace ratio EFHG. Rotate the paper so that the terrace EFHG is mapped onto the patio LMON. Describe the conversion. What does this patios confirm? y MP 6 Precision 4 Work partner list the essential components needed to prove the figure is similar to the other. -8 View Engage section online. Discuss the photo. Invite students to identify the game they are playing and the board where it will be played. Then, check the hour performance task. -6 4N -2H 0 2 x G 4 6 8 -2 L -4 O © Houghton Mifflin Harcourt Publishing Company PREVIEW: LESSON PERFORMANCE TASK E 2 DEAL IF SIMILARITY CHANGES CAN BE SHOWN TO MAP ONE INDICATOR TO ANOTHER, the figures are similar. F 6 Language purpose Important question: How can similarity changes be used to show the two digits are similar? Source Locker Confirming Similarity explore student is expected: COMMON CORE Date 16.2 Proving Figures Are Similar In Using Changes Important Question: How Can Similarities Be Used to Show Two Figures Are Similar? A similarity conversion is a conversion in which the image has the same shape as the pre-image. Changes in similarity include reflections, translations, rotations and enlargements. The two plane numbers are similar if and only if one number can be mapped to another through one or more similarity conversions. G-SRT. A.2 In view of the two digits, use the definition of similarity of similarity changes to determine whether they are similar ... So is G-C. A.1 The network shows the map of the city park. Use the observing paper to confirm that the park elements are similar. Mathematical practice trace ratio EFHG. Rotate the paper so that the terrace EFHG is mapped onto the patio LMON. Describe the conversion. What does this patios confirm? y MP 6 Precision 4 Work partner list the essential components needed to prove the figure is similar to the other. -8 View Engage section online. Discuss the photo. Invite students to identify the game they are playing and the board where it will be played. Then, check the hour performance task. -6 4N -2H 0 2 x G 4 6 8 -2 L -4 O © Houghton Mifflin Harcourt Publishing Company PREVIEW: LESSON PERFORMANCE TASK E 2 DEAL IF SIMILARITY CHANGES CAN BE SHOWN TO MAP ONE INDICATOR TO ANOTHER, the figures are similar. F 6 Language purpose Important question: How can similarity changes be used to show the two digits are similar? Source Locker Confirming Similarity explore student is expected: COMMON CORE Date 16.2 Proving Figures Are Similar In Using Changes Important Question: How Can Similarities Be Used to Show Two Figures Are Similar? A similarity conversion is a conversion in which the image has the same shape as the pre-image. Changes in similarity include reflections, translations, rotations and enlargements. The two plane numbers are similar if and only if one number can be mapped to another through one or more similarity conversions. G-SRT. A.2 In view of the two digits, use the definition of similarity of similarity changes to determine whether they are similar ... So is G-C. A.1 The network shows the map of the city park. Use the observing paper to confirm that the park elements are similar. Mathematical practice trace ratio EFHG. Rotate the paper so that the terrace EFHG is mapped onto the patio LMON. Describe the conversion. What does this patios confirm? y MP 6 Precision 4 Work partner list the essential components needed to prove the figure is similar to the other. -8 View Engage section online. Discuss the photo. Invite students to identify the game they are playing and the board where it will be played. Then, check the hour performance task. -6 4N -2H 0 2 x G 4 6 8 -2 L -4 O © Houghton Mifflin Harcourt Publishing Company PREVIEW: LESSON PERFORMANCE TASK E 2 DEAL IF SIMILARITY CHANGES CAN BE SHOWN TO MAP ONE INDICATOR TO ANOTHER, the figures are similar. F 6 Language purpose Important question: How can similarity changes be used to show the two digits are similar? Source Locker Confirming Similarity explore student is expected: COMMON CORE Date 16.2 Proving Figures Are Similar In Using Changes Important Question: How Can Similarities Be Used to Show Two Figures Are Similar? A similarity conversion is a conversion in which the image has the same shape as the pre-image. Changes in similarity include reflections, translations, rotations and enlargements. The two plane numbers are similar if and only if one number can be mapped to another through one or more similarity conversions. G-SRT. A.2 In view of the two digits, use the definition of similarity of similarity changes to determine whether they are similar ... So is G-C. A.1 The network shows the map of the city park. Use the observing paper to confirm that the park elements are similar. Mathematical practice trace ratio EFHG. Rotate the paper so that the terrace EFHG is mapped onto the patio LMON. Describe the conversion. What does this patios confirm? y MP 6 Precision 4 Work partner list the essential components needed to prove the figure is similar to the other. -8 View Engage section online. Discuss the photo. Invite students to identify the game they are playing and the board where it will be played. Then, check the hour performance task. -6 4N -2H 0 2 x G 4 6 8 -2 L -4 O © Houghton Mifflin Harcourt Publishing Company PREVIEW: LESSON PERFORMANCE TASK E 2 DEAL IF SIMILARITY CHANGES CAN BE SHOWN TO MAP ONE INDICATOR TO ANOTHER, the figures are similar. F 6 Language purpose Important question: How can similarity changes be used to show the two digits are similar? Source Locker Confirming Similarity explore student is expected: COMMON CORE Date 16.2 Proving Figures Are Similar In Using Changes Important Question: How Can Similarities Be Used to Show Two Figures Are Similar? A similarity conversion is a conversion in which the image has the same shape as the pre-image. Changes in similarity include reflections, translations, rotations and enlargements. The two plane numbers are similar if and only if one number can be mapped to another through one or more similarity conversions. G-SRT. A.2 In view of the two digits, use the definition of similarity of similarity changes to determine whether they are similar ... So is G-C. A.1 The network shows the map of the city park. Use the observing paper to confirm that the park elements are similar. Mathematical practice trace ratio EFHG. Rotate the paper so that the terrace EFHG is mapped onto the patio LMON. Describe the conversion. What does this patios confirm? y MP 6 Precision 4 Work partner list the essential components needed to prove the figure is similar to the other. -8 View Engage section online. Discuss the photo. Invite students to identify the game they are playing and the board where it will be played. Then, check the hour performance task. -6 4N -2H 0 2 x G 4 6 8 -2 L -4 O © Houghton Mifflin Harcourt Publishing Company PREVIEW: LESSON PERFORMANCE TASK E 2 DEAL IF SIMILARITY CHANGES CAN BE SHOWN TO MAP ONE INDICATOR TO ANOTHER, the figures are similar. F 6 Language purpose Important question: How can similarity changes be used to show the two digits are similar? Source Locker Confirming Similarity explore student is expected: COMMON CORE Date 16.2 Proving Figures Are Similar In Using Changes Important Question: How Can Similarities Be Used to Show Two Figures Are Similar? A similarity conversion is a conversion in which the image has the same shape as the pre-image. Changes in similarity include reflections, translations, rotations and enlargements. The two plane numbers are similar if and only if one number can be mapped to another through one or more similarity conversions. G-SRT. A.2 In view of the two digits, use the definition of similarity of similarity changes to determine whether they are similar ... So is G-C. A.1 The network shows the map of the city park. Use the observing paper to confirm that the park elements are similar. Mathematical practice trace ratio EFHG. Rotate the paper so that the terrace EFHG is mapped onto the patio LMON. Describe the conversion. What does this patios confirm? y MP 6 Precision 4 Work partner list the essential components needed to prove the figure is similar to the other. -8 View Engage section online. Discuss the photo. Invite students to identify the game they are playing and the board where it will be played. Then, check the hour performance task. -6 4N -2H 0 2 x G 4 6 8 -2 L -4 O © Houghton Mifflin Harcourt Publishing Company PREVIEW: LESSON PERFORMANCE TASK E 2 DEAL IF SIMILARITY CHANGES CAN BE SHOWN TO MAP ONE INDICATOR TO ANOTHER, the figures are similar. F 6 Language purpose Important question: How can similarity changes be used to show the two digits are similar? Source Locker Confirming Similarity explore student is expected: COMMON CORE Date 16.2 Proving Figures Are Similar In Using Changes Important Question: How Can Similarities Be Used to Show Two Figures Are Similar? A similarity conversion is a conversion in which the image has the same shape as the pre-image. Changes in similarity include reflections, translations, rotations and enlargements. The two plane numbers are similar if and only if one number can be mapped to another through one or more similarity conversions. G-SRT. A.2 In view of the two digits, use the definition of similarity of similarity changes to determine whether they are similar ... So is G-C. A.1 The network shows the map of the city park. Use the observing paper to confirm that the park elements are similar. Mathematical practice trace ratio EFHG. Rotate the paper so that the terrace EFHG is mapped onto the patio LMON. Describe the conversion. What does this patios confirm? y MP 6 Precision 4 Work partner list the essential components needed to prove the figure is similar to the other. -8 View Engage section online. Discuss the photo. Invite students to identify the game they are playing and the board where it will be played. Then, check the hour performance task. -6 4N -2H 0 2 x G 4 6 8 -2 L -4 O © Houghton Mifflin Harcourt Publishing Company PREVIEW: LESSON PERFORMANCE TASK E 2 DEAL IF SIMILARITY CHANGES CAN BE SHOWN TO MAP ONE INDICATOR TO ANOTHER, the figures are similar. F 6 Language purpose Important question: How can similarity changes be used to show the two digits are similar? Source Locker Confirming Similarity explore student is expected: COMMON CORE Date 16.2 Proving Figures Are Similar In Using Changes Important Question: How Can Similarities Be Used to Show Two Figures Are Similar? A similarity conversion is a conversion in which the image has the same shape as the pre-image. Changes in similarity include reflections, translations, rotations and enlargements. The two plane numbers are similar if and only if one number can be mapped to another through one or more similarity conversions. G-SRT. A.2 In view of the two digits, use the definition of similarity of similarity changes to determine whether they are similar ... So is G-C. A.1 The network shows the map of the city park. Use the observing paper to confirm that the park elements are similar. Mathematical practice trace ratio EFHG. Rotate the paper so that the terrace EFHG is mapped onto the patio LMON. Describe the conversion. What does this patios confirm? y MP 6 Precision 4 Work partner list the essential components needed to prove the figure is similar to the other. -8 View Engage section online. Discuss the photo. Invite students to identify the game they are playing and the board where it will be played. Then, check the hour performance task. -6 4N -2H 0 2 x G 4 6 8 -2 L -4 O © Houghton Mifflin Harcourt Publishing Company PREVIEW: LESSON PERFORMANCE TASK E 2 DEAL IF SIMILARITY CHANGES CAN BE SHOWN TO MAP ONE INDICATOR TO ANOTHER, the figures are similar. F 6 Language purpose Important question: How can similarity changes be used to show the two digits are similar? Source Locker Confirming Similarity explore student is expected: COMMON CORE Date 16.2 Proving Figures Are Similar In Using Changes Important Question: How Can Similarities Be Used to Show Two Figures Are Similar? A similarity conversion is a conversion in which the image has the same shape as the pre-image. Changes in similarity include reflections, translations, rotations and enlargements. The two plane numbers are similar if and only if one number can be mapped to another through one or more similarity conversions. G-SRT. A.2 In view of the two digits, use the definition of similarity of similarity changes to determine whether they are similar ... So is G-C. A.1 The network shows the map of the city park. Use the observing paper to confirm that the park elements are similar. Mathematical practice trace ratio EFHG. Rotate the paper so that the terrace EFHG is mapped onto the patio LMON. Describe the conversion. What does this patios confirm? y MP 6 Precision 4 Work partner list the essential components needed to prove the figure is similar to the other. -8 View Engage section online. Discuss the photo. Invite students to identify the game they are playing and the board where it will be played. Then, check the hour performance task. -6 4N -2H 0 2 x G 4 6 8 -2 L -4 O © Houghton Mifflin Harcourt Publishing Company PREVIEW: LESSON PERFORMANCE TASK E 2 DEAL IF SIMILARITY CHANGES CAN BE SHOWN TO MAP ONE INDICATOR TO ANOTHER, the figures are similar. F 6 Language purpose Important question: How can similarity changes be used to show the two digits are similar? Source Locker Confirming Similarity explore student is expected: COMMON CORE Date 16.2 Proving Figures Are Similar In Using Changes Important Question: How Can Similarities Be Used to Show Two Figures Are Similar? A similarity conversion is a conversion in which the image has the same shape as the pre-image. Changes in similarity include reflections, translations, rotations and enlargements. The two plane numbers are similar if and only if one number can be mapped to another through one or more similarity conversions. G-SRT. A.2 In view of the two digits, use the definition of similarity of similarity changes to determine whether they are similar ... So is G-C. A.1 The network shows the map of the city park. Use the observing paper to confirm that the park elements are similar. Mathematical practice trace ratio EFHG. Rotate the paper so that the terrace EFHG is mapped onto the patio LMON. Describe the conversion. What does this patios confirm? y MP 6 Precision 4 Work partner list the essential components needed to prove the figure is similar to the other. -8 View Engage section online. Discuss the photo. Invite students to identify the game they are playing and the board where it will be played. Then, check the hour performance task. -6 4N -2H 0 2 x G 4 6 8 -2 L -4 O © Houghton Mifflin Harcourt Publishing Company PREVIEW: LESSON PERFORMANCE TASK E 2 DEAL IF SIMILARITY CHANGES CAN BE SHOWN TO MAP ONE INDICATOR TO ANOTHER, the figures are similar. F 6 Language purpose Important question: How can similarity changes be used to show the two digits are similar? Source Locker Confirming Similarity explore student is expected: COMMON CORE Date 16.2 Proving Figures Are Similar In Using Changes Important Question: How Can Similarities Be Used to Show Two Figures Are Similar? A similarity conversion is a conversion in which the image has the same shape as the pre-image. Changes in similarity include reflections, translations, rotations and enlargements. The two plane numbers are similar if and only if one number can be mapped to another through one or more similarity conversions. G-SRT. A.2 In view of the two digits, use the definition of similarity of similarity changes to determine whether they are similar ... So is G-C. A.1 The network shows the map of the city park. Use the observing paper to confirm that the park elements are similar. Mathematical practice trace ratio EFHG. Rotate the paper so that the terrace EFHG is mapped onto the patio LMON. Describe the conversion. What does this patios confirm? y MP 6 Precision 4 Work partner list the essential components needed to prove the figure is similar to the other. -8 View Engage section online. Discuss the photo. Invite students to identify the game they are playing and the board where it will be played. Then, check the hour performance task. -6 4N -2H 0 2 x G 4 6 8 -2 L -4 O © Houghton Mifflin Harcourt Publishing Company PREVIEW: LESSON PERFORMANCE TASK E 2 DEAL IF SIMILARITY CHANGES CAN BE SHOWN TO MAP ONE INDICATOR TO ANOTHER, the figures are similar. F 6 Language purpose Important question: How can similarity changes be used to show the two digits are similar? Source Locker Confirming Similarity explore student is expected: COMMON CORE Date 16.2 Proving Figures Are Similar In Using Changes Important Question: How Can Similarities Be Used to Show Two Figures Are Similar? A similarity conversion is a conversion in which the image has the same shape as the pre-image. Changes in similarity include reflections, translations, rotations and enlargements. The two plane numbers are similar if and only if one number can be mapped to another through one or more similarity conversions. G-SRT. A.2 In view of the two digits, use the definition of similarity of similarity changes to determine whether they are similar ... So is G-C. A.1 The network shows the map of the city park. Use the observing paper to confirm that the park elements are similar. Mathematical practice trace ratio EFHG. Rotate the paper so that the terrace EFHG is mapped onto the patio LMON. Describe the conversion. What does this patios confirm? y MP 6 Precision 4 Work partner list the essential components needed to prove the figure is similar to the other. -8 View Engage section online. Discuss the photo. Invite students to identify the game they are playing and the board where it will be played. Then, check the hour performance task. -6 4N -2H 0 2 x G 4 6 8 -2 L -4 O © Houghton Mifflin Harcourt Publishing Company PREVIEW: LESSON PERFORMANCE TASK E 2 DEAL IF SIMILARITY CHANGES CAN BE SHOWN TO MAP ONE INDICATOR TO ANOTHER, the figures are similar. F 6 Language purpose Important question: How can similarity changes be used to show the two digits are similar? Source Locker Confirming Similarity explore student is expected: COMMON CORE Date 16.2 Proving Figures Are Similar In Using Changes Important Question: How Can Similarities Be Used to Show Two Figures Are Similar? A similarity conversion is a conversion in which the image has the same shape as the pre-image. Changes in similarity include reflections, translations, rotations and enlargements. The two plane numbers are similar if and only if one number can be mapped to another through one or more similarity conversions. G-SRT. A.2 In view of the two digits, use the definition of similarity of similarity changes to determine whether they are similar ... So is G-C. A.1 The network shows the map of the city park. Use the observing paper to confirm that the park elements are similar. Mathematical practice trace ratio EFHG. Rotate the paper so that the terrace EFHG is mapped onto the patio LMON. Describe the conversion. What does this patios confirm? y MP 6 Precision 4 Work partner list the essential components needed to prove the figure is similar to the other. -8 View Engage section online. Discuss the photo. Invite students to identify the game they are playing and the board where it will be played. Then, check the hour performance task. -6 4N -2H 0 2 x G 4 6 8 -2 L -4 O © Houghton Mifflin Harcourt Publishing Company PREVIEW: LESSON PERFORMANCE TASK E 2 DEAL IF SIMILARITY CHANGES CAN BE SHOWN TO MAP ONE INDICATOR TO ANOTHER, the figures are similar. F 6 Language purpose Important question: How can similarity changes be used to show the two digits are similar? Source Locker Confirming Similarity explore student is expected: COMMON CORE Date 16.2 Proving Figures Are Similar In Using Changes Important Question: How Can Similarities Be Used to Show Two Figures Are Similar? A similarity conversion is a conversion in which the image has the same shape as the pre-image. Changes in similarity include reflections, translations, rotations and enlargements. The two plane numbers are similar if and only if one number can be mapped to another through one or more similarity conversions. G-SRT. A.2 In view of the two digits, use the definition of similarity of similarity changes to determine whether they are similar ... So is G-C. A.1 The network shows the map of the city park. Use the observing paper to confirm that the park elements are similar. Mathematical practice trace ratio EFHG. Rotate the paper so that the terrace EFHG is mapped onto the patio LMON. Describe the conversion. What does this patios confirm? y MP 6 Precision 4 Work partner list the essential components needed to prove the figure is similar to the other. -8 View Engage section online. Discuss the photo. Invite students to identify the game they are playing and the board where it will be played. Then, check the hour performance task. -6 4N -2H 0 2 x G 4 6 8 -2 L -4 O © Houghton Mifflin Harcourt Publishing Company PREVIEW: LESSON PERFORMANCE TASK E 2 DEAL IF SIMILARITY CHANGES CAN BE SHOWN TO MAP ONE INDICATOR TO ANOTHER, the figures are similar. F 6 Language purpose Important question: How can similarity changes be used to show the two digits are similar? Source Locker Confirming Similarity explore student is expected: COMMON CORE Date 16.2 Proving Figures Are Similar In Using Changes Important Question: How Can Similarities Be Used to Show Two Figures Are Similar? A similarity conversion is a conversion in which the image has the same shape as the pre-image. Changes in similarity include reflections, translations, rotations and enlargements. The two plane numbers are similar if and only if one number can be mapped to another through one or more similarity conversions. G-SRT. A.2 In view of the two digits, use the definition of similarity of similarity changes to determine whether they are similar ... So is G-C. A.1 The network shows the map of the city park. Use the observing paper to confirm that the park elements are similar. Mathematical practice trace ratio EFHG. Rotate the paper so that the terrace EFHG is mapped onto the patio LMON.

reflect the specified 7. **QUESTIONING STRATEGIES** Discussion What are some of the things you need to be careful about solving problems related to finding values for similar numbers variables? Possible answer: If you find lateral lengths, you need to be sure to create the proportion correctly, and do you have to remember that half the lengths are proportional, rather than being picture always similar to your pre-image? Explain. No, no, for example, disproportionately stretching and shrinking the number can create an image that is not similar. Equal. If you have an algebraic equation set up, you must be careful not to make mistakes in calculations. Use a chart of your $\triangle ABC \cong \triangle ACD$. Can two congruences have different sides of length? Explain. Yes, the angle measure refers to the opening volume between the two sides; the length of the sides of the angle does not affect its size. 5.6 cm Scroll x. 9.5 cm 50° Scroll y. CD AD = AE = 50 = $3x + 14$ BE 5.6 + y = 5.6 36 = 3x If the two digits are presented in a similar way, what can be inferred about these sides and angles? Similar figures are proportional to the respective sides and the corresponding angles are consistent. 4 cm B m $\angle C = m\angle A$ TOTAL LESSON E (3x + 14) 8.4° D y cm 12 = x y = 1.4 \cong Houghton Mifflin Harcourt Publishing Company Work 10. Consider two similar triangles $\triangle ABC$ and $\triangle A'B'C'$. If both $m\angle A' = m\angle C$ and $m\angle B' = m\angle A$, what can you conclude $\triangle ABC \cong \triangle A'B'C'$? Explain your reasoning. Because the two triangles are similar, we know $m\angle A' = m\angle A$ and $m\angle B' = m\angle B$. Together with the information provided, it tells us $m\angle A = m\angle C$ and $m\angle B = m\angle A$. Therefore, $\triangle ABC$ is equilateral. 11. Rectangle JKLM maps rectangle RSTU by transformation $(x, y) \rightarrow (4x, 4y)$. If the perimeter of RSTU is x, what is the perimeter JKLM in terms of x? The ratio of the respective sides is 1:4 and therefore the perimeter ratio is 1:4. X Perimeter JKLM is = 4. 12. Important question Check-In if the two digits are similar, what can we infer from their respective parts? Similar figures shall have appropriate angles which are compatible and have corresponding sides that are proportional. Module 16 855 Lesson 3 LANGUAGE SUPPORT IN2_MNLESE389847_U7M16L3 855 Connecting to a word Students can be very familiar with the connotations of word translation because it refers to interlingual translation. In fact, this use of the word comes from its a strict sense: translation between languages moves meaning from one to another, as the translation indicator moves it from one place to another. Connect to the fact that the mathematical translation does not change the nature of the original figure, because the linguistic translation does not significantly change the original meaning of the message as it enters another language. 855 Lesson 16.3 18.2014.2014 Rate: Homework and Internship RATE • Online Homework • Tips and help • Additional practice figures are consistent with the relevant angles? Are the parties concerned proportionate? Are the numbers similar? Describe how you know how to use similarity conversions. 1. 2. GUIDANCE ON DESIGNATION Yes; No, no. Rotate the smaller square 90° around its upper right corner, then translate it down and left until the lower left ends coincide. If you extend this scale factor from 3 to 2.5, the short edges are in sync, but the long edges are not. - yes, I don't know, yes, I don't know. Yes. Translate the smaller square down and right so that its top left top coincides with that of a larger square. Then expand the scale factor 2 around this peak. 3. 4. 5. Figure ABCD is similar to figure MNKL. Write the section that contains BC and KL. CD BC = KN KL. 6. $\triangle XYZ$ resembles $\triangle KLM$. Write congruence statements that must be true. 8. $\angle Z \cong \angle X$, $\angle Y \cong \angle V$ and $\angle Z \cong \angle W$, 9th CDEF maps JKLM with transformation $(x, y) \rightarrow (5x, 5y) \rightarrow (x - 4, y - 4)$. What is 1 EF? $\angle LM$ Module 16 Execution IN2_MNLESE389847_U7M16L3 856 $\triangle DEF$ maps $\angle ASTU$. Write the section that contains THE AND SU. ST SU = DE DF $\triangle MNP$ is $\triangle HJK$ and both triangles are equilateral. If $m\angle P \cong 90^\circ$, $\angle M \cong \angle N$. So, $\angle M$, $\angle J$ and $\angle N$ are all $\cong \angle H$. Practice Explore Connecting Angles and Sides Figures Exercises 1-4 Example 1 Justifying Features Similar Figures Using Transformations Exercises 9-12 Example 2 Applying Characteristics Similar Figures Exercises 5-8 Integrate Mathematical Practices Focus On Modeling MP.4 Compare Symbols of Equality, Similarity, © Houghton Mifflin Harcourt Publishing Company Yes; yes, I don't know. Yes. Rotate the smaller figure 90° , then translate it so that the two corresponding peaks match. Then expand the smaller indicator centers with a factor of 2 around that peak. No, no, no, No, you can rotate and translate the triangle to the right so that the right angles coincide, but no similarity to the transformation makes for fierce angles congruent. Concepts and skills and conjugation. Point out that combining symbols of equality and similarity gives a conjugation symbol. Combine the composition of the symbol with its meaning: congruence combines equality and similarity, because the conglomerate numbers are of the same size and shape. 10. maps $\triangle VWX$ with transformation $(x, y) \rightarrow (x + 3, y - 1) \rightarrow (2x, 2y)$. If $Wx = 12$, what is QR equal? QR = 1 (12) = 6. 2. Lesson 3 856 Depth of Knowledge (D.O.K.) COMMON CORE Mathematical practices 1-4 2 Skills/concepts MP.3 Logic 5-17 2 Skills/concepts MP.5 Use of tools 18-20 2 Skills/concepts MP.2 Recital 23-22 2 Skills / Concepts MP.4 Modeling 23-24 2 Skills / Concepts MP.4 Modeling 25 3 Strategic Thinking MP.3 Logic 26 3 Strategic Thinking MP.3 Logic 27 3 Strategic Thinking MP.3 Logic 18/04/14 4:05 Corresponding Parts Similar Figures 856 11. $\triangle QRS$ Maps $\triangle XYZ$ with Transformation $(x, y) \rightarrow (6x, 6y)$. If QS = 7, what is the length of XZ? AVOID COMMON MISTAKES When solving a portion about the scale model, some students may make mistakes because they were unable to read the items correctly. Remind them that the length of the respective sides may not be in the same units, and may need to convert one unit to another. 12. Algebra Two similar numbers are similar based on the transformation $(x, y) \rightarrow (12x, 3y)$. What is the value(s) of XZ? XZ = 42 If the figures are similar, 12 = 3a and a = 2 or a = -2, 13. The Algebra $\triangle PQR$ is similar $\triangle XYZ$. If $PQ = n + 2$, $QR = n - 2$ and $XY = n - 2$, what is the YZ value in part n? Since $n = 2 = (n + 2)(n - 2)$, the ratio of the pair to the respective sides is $(n - 2):1$. Then the value of YZ is $(n - 2)(n - 2) = 2 - 4 = 4:1$. Which transformations don't give similar figures? Select everything that applies and explain your options. Options B and D do not produce similar $\triangle A, \triangle x - (x - 4, y) \rightarrow (8x, 8y)$ B. $\triangle x - (x + 1, y + 1) \rightarrow (3x, 2y) \rightarrow (x, y) \rightarrow (5x, 5y) \rightarrow (x, y) \rightarrow (x + 3, y - 3)$ D. $\triangle x - (x, y) \rightarrow (x + 6, y - 2) \rightarrow (2x, 2y) \rightarrow (x, y) \rightarrow (x, y) \rightarrow (2x, y) \rightarrow (x, y) \rightarrow (x - 2, y) \rightarrow (3x, 3y) \rightarrow (x, y)$. If $CD = a + 1$, $DE = 2a - 1$, $ST = 3 + 2$ and $TU = 1 + 6$, find values a and b. The length of ASTU is 3 times the length of the corresponding $\triangle CDE$. It gives equations $3(a + 1) = 2b + 3$ and $3(2a - 1) = b + 6$. Solve this equation system to get a = 2 and b = 3. 18. If the transformations list contains a transformation $(ax, by) \neq (bx, ay)$, can a pre-image and image represent any concurrent number? Can they represent a similar, non-synchronous number? Justify your answers with examples. - yes, I don't know. If $ab = \pm 1$, then the pre-image and image are in sync (and thus similar). The preview and image can represent similar non-congruent numbers if the conversions in the list also contains (bx, ay) . The transformation $(ax$ followed by (bx, ay)) is equivalent to enlargement (abx, ay) . 19. Do any of them resemble a pair of equilateral triangles? Why or why not? Yes, the triangles are similar. All corners of each triangle are equal to 60° and therefore the respective angles are compatible. The sides of each triangle are consistent and therefore the ratio of the respective sides is constant. 20. Figure CDEF is similar to FIGURE KLMN. What are the claims that are false? Select everything that applies and explain why. CD = EF. $\angle KLM$ CF = EF. $\angle B_KN$ CF DE = C. $\angle L_KM$ LM = E. $\angle D_KN$ CD Option E is incorrect. The proportion does not match the corresponding sides. © Houghton Mifflin Harcourt Publishing Company • Image Credits: © Jeff Dalton / Alamy Think about this model of a train locomotive answering the following two questions. 21. If the model is 18 inches long and the actual locomotive is 72 feet long, what is the transformation of the similarity from the model to the actual locomotive? Expression of the response with x , where x is the measurement of the model and the axis is the corresponding measurement on the actual locomotive. The model is 1.5 feet in length and thus the transformation of similarity is $x \rightarrow 48x$. 22. If the front wheels of the locomotive are 4 feet in diameter, what is the diameter of the model's front wheels? Express your answer in inches. The model's front wheels have a diameter of 1 inch. Module 16 IN2_MNLESE389847_U7M16L3 858 858 Lesson 3 18/04/14 21:05 Corresponding parts similar to 858 Use the following graph to answer the following two problems: MAGAZINE y Let Students write a diary entry in which they form their own problems using an unknown length that must be found using similar triangles. Remind students to add solutions to their problems. 8 B C We 4 A - 8 D - 4 L 0 4 J - 4 - 8 W 23. Specify a series of two conversions that will match ABCD to JKLM. Possible answer: $\triangle x - (x, y) \rightarrow (2x, 2y) \rightarrow (x + 4, y - 8)$ or $\triangle x - (x + 7, y - 4) \rightarrow (2x, 2y) \rightarrow (AC + BD) 24$. Locate the \angle value. JL + VAT AC Two digits are similar, so all the sides/diagonals have the same ratio. $\angle JL$ BD 1 1 = \angle and \angle = \angle and so \angle = \angle 22 KM JL + VAT AC + BD H.O.T. Focus on higher-level thinking 25. Counterexamples All rectangles are similar. Is this claim true or false? If that's true, explain why. If false, give a counter-example. The statement is false. For example, a rectangle with dimensions of 5 units by 2 units is not similar to a rectangle with dimensions of 4 units by three units. © Houghton Mifflin Harcourt Publishing Company House 26. Justify Justification If ABCD is similar to KLMN and MNKL, what type of quadrilateral is KLMN? Justify your reasoning. Looking at the corresponding angles, $\angle A \cong \angle L$ and $\angle A \cong \angle M$, which means $\angle K \cong \angle M$ by Transitive Property Congruence. It $\angle B \cong \angle L$ and $\angle B \cong \angle N$, which means $\angle L \cong \angle N$ by Transitive Property Congruence. If both rectangular corners are concentric, then the rectangular is the parallelogram. Therefore, KLMN is a parallelogram. It may also be a diamond, a rectangle or a square, but more information is needed to justify this conclusion. 27. The justification for the criticism is $\triangle PQR$ is similar to $\triangle QPR$, then $\triangle PQR$ resembles $\triangle QPR$. Explain whether this statement is correct or not. The statement is false. If $\triangle PQR \cong \triangle QPR$, then $\triangle PQR$ is equilateral. This does not demonstrate any $\triangle P$ and $\triangle R$ or $\triangle Q$ and $\triangle R$. For the $\triangle PQR$ to be $\triangle QPR$, the triangle must be equilateral. Module 16 IN2_MNLESE389847_U7M16L3 859 lesson 16.3 859 lesson 3 18/04/14 9:05 PM Lesson Performance Task You have hired an architect to design your dream house and now the house has been built. Before moving in, you have decided to travel through the house with a yardstick to see how well the builders have followed the architect's floor plan. Describe in as much detail as possible how you can achieve your goal. Then discuss how you can decide whether the space shape and other features of the house are similar to the corresponding shapes on the floor plan. Integrate mathematical practices Focus on critical thinking MP.3 Rectangle 1 is units length and b units in bedroom living RM 17.5 \times 18.7' width. Rectangle 2 is obtained by multiplying the sides of rectangle 1 by 10. FOYER • Is a rectangle 2 similar to a rectangle you? Explain. - yes, I don't know. multiplying the poles by the same scale factor changes the size of the drawing but not the shape so that the rectangles are similar. SCALE 1 = 10 ft Among students should discuss: *scale plan and how they can use it to check the dimensions of the room; • A method they can use to check that rooms and other floor plan functions are mapped with corresponding shapes house by a number of changes, including enlargement; • How do I compare the area of rectangle 2 with the area of rectangle 1? Explain. Area Rectangle 1 is ab, and area Rectangle 2 is 100ab, so area Rectangle 2 is 100 times larger than area Rectangle 1. • Measurements that should be maintained when switching from floor plan to house (e.g. corners) and measurements that would not be (e.g. lengths). INTEGRATE the mathematical practices of Focus on Reasoning MP.2 Three streets meet to form an equilateral © Houghton Mifflin Harcourt Publishing Company triangle 100 meters on each side. In a photo triangle taken directly overhead, each side measures 4 inches. How is the actual triangle of streets and triangle photo so? How are they different? Explain. Their sizes are different, but their shape is the same; the sides of the photo triangle are shorter than the actual triangle, but because they are both equilateral triangles, their sides are proportional and both have three 60° corners. Module 16 860 Lesson 3 EXTENSION ACTIVITY IN2_MNLESE389847_U7M16L3 860 Supply yardsticks or meter sticks for students and have them make a floor plan in the classroom. Students should focus on the characteristics of the room that are permanent, such as dimensions and shape, excluding those that are not, for example, tables and tables. You can specify the approximate size of the floor plan (for example, 8.5 inches \times 11 inches of paper), thereby forcing students to calculate a suitable scale. Students can switch floor plans with a partner and check the size, shape and calculations of the partner. 18/04/14 21:05 Scores Rubric 2 Points: The student's response is accurate and complete in the performance of tasks or tasks. 1 point: The student's response contains the characteristics of the appropriate response, but is invalid. 0 points: The student's response does not include the characteristics of the relevant response. Corresponding parts similar to blueprints 860 LESSON 16.4 Name AA Similarity Triangles Class 16.4 AA Similarity Triangles Important question: How can you show that the two triangles are similar? Common Core Math Standards To Explore student is expected: COMMON CORE G-SRT. A.3 The study of the similarity of the angle angle in the triangles' resource cabinet is similar if their respective sides are proportionate and their respective angles are consistent. There are several shortcuts to prove triangles. Use the properties of similarity conversions to specify an AA criterion for two similar triangles. So is G-SRT. B.5 Mathematical practices COMMON CORE Date Draw triangle and mark it $\triangle ABC$. Elsewhere on your page, draw a segment that is longer than AB and tick endpoints D and E. MP.5 Using Tools C Language Objective F Explain to the partner how to use the Angle-Angle criterion to show triangles. B A D B Copy $\triangle CAB$ and $\triangle ABC$ according to paragraphs D and E. If necessary, expand the rays of the copied corners and mark their intersection F. You have built $\triangle DEF$. Important question: How can you show that the two triangles are similar? C You built corners D and E to be consistent with angles A and B respectively. PREVIEW: LESSON PERFORMANCE TASK View the Include online section. Discuss this illustration and invite students to speculate on what it represents. Then, check the hour performance task. © Houghton Mifflin Harcourt Publishing Company ENGAGE angles C and F must also be congruent due to the third-corner theorem. D Check the proportionality of the respective parts. Possible answer (ratios should be equal): $4AB = 0.4$, $DE = 10.3AC = 0.4$, $DF = 7.52BC = 0.4$, $EF = 5$ Since the ratios are equal, the sides of the triangle are proportional. Let's reflect the 1st Discussion Compare the results with your classmates. What assumption can you make for two triangles with two corresponding conjugation angles? If the two triangles have two corresponding corners, the triangles shall be similar. Module 16 must be EDIT-Check E1 key=NL-A; CA-A Correction Lesson 4 861 gh File info made trash IN2_MNLESE389847_U7M16L4.indd 861 HARDCOVER PAGES 861.872 Resource Locker Explorers I for Triangle Explore I and their proportions g triangles g sides are uts provi correspondin r if their is several shortles he simila ent. Two triangl g corners are congru eg correspondin draw segme r, page, is simila Elsewhere Watch for hardcover student edition page numbers for this lesson. It $\triangle ABC$, E. le and label int D and _ endpo Draw triangular AB and label longer than $\triangle C$ F B D A D $\triangle DEF$. According to, built D and E, F. You need points for cti point and $\triangle ABC$ for these interest therefore $\triangle CAB$ and label respectively. If necessary, A and B, angles, if angles em. be congruent Third corner theor D and E angles are equal: used s should you constr constr congruent becau answer (ratio also possible and F must be sides. angles C ratio 2 Check BC = 0.4 _ 3 EF 5 AC = 0.4 _ 47.5 AB = 0.4 _ 47.5 (alprnt). DE 10 les are equal from the triple, sides y g Compan & n Mifflin Harcourt What conje to be simila classmates. les must own? s, s you results congruent angles Compare ng ruent angle Discussion is two vastai sponding cong to two corr triangles les than two trian © Houghto Since reflective 1. Lesson 4 861 Module 16.4.indd 47. U7M16E389847_U2N_MNLE 861 Lesson 16.4 861 18/04/14 9:00 PM 18/04/14 9:01 Explain 1 Proving Angle-Angle Triangle Similarity EXPLORES recommends the following teorem to determine whether the two triangles are similar. Angle angle (AA) Triangle similarity the works to detect the similarity of the triangles angle when two corners of one triangle are consistent with the other corners of the other triangle, the two triangles are similar. Angle angle (AA) Triangle Similarity Theorem 1 Prove Angle-Angle Triangle Similarity to The Yrem. Simple: $\angle A \cong \angle X$ and $\angle B \cong \angle Y$ integrate technology Y Prove: $\triangle ABC \cong \triangle XYZ$ Students have the opportunity to make similar triangles of activity either in the book or online. C A Z x question strategies XY . Let the $\triangle ABC$ be $\triangle ABC$. Apply the expansion $\triangle ABC$ scale factor $k = AB/BC$. What angle-angle similarity claim about triangles? According to the angle-angle similarity criterion, the triangles with the two drawers are similar. Y B enlargement A C C A' Z X A and $\angle Z \cong \angle B$ the corresponding angles of similar triangles are in sync, therefore $\triangle XY \cong \triangle AB$ $\triangle AB \cong \triangle ZY$ Given that $\angle A \cong \angle X$ and $\angle B \cong \angle Y$ Conjugate $\triangle ABC$ to $\triangle XYZ$. The expansion followed this series of rigid movements shows that there is a series of similarity transformations that $\triangle ABC \cong \triangle XYZ$. Therefore, $\triangle ABC \cong \triangle XYZ$. Reflect the 2. Discussion Compare and Contrast AA Similarity Postulate Both postulates require that two pairs of angles be in sync, but congruence you also © Houghton Mifflin Harcourt Publishing Company - Proving angle triangle similarity to integrate mathematical practices focus on math connections MP.1 Compare to prove two triangles similar. QUESTIONING STRATEGIES need to know that the parties involved are consistent, so the figures are the same. How to use AA similarity to show the two triangles are similar? Indicates that two corners of one triangle are in relation to two corners of the other triangle. This allows you to conclude that the two triangles are similar. AA similarity to Postulate only shows that the two triangles have the same shape. Module 16 862 Lesson 4 PROFESSIONAL DEVELOPMENT IN2_MNLESE389847_U7M16L4.indd 862 Learning Progression 18/04/14 9:01 Students have already turned out triangles of congruent using SAS, SSS, SAS. The same types of reasoning are used here to examine AA similarities, and use this similarity to solve problems. AA similarity Triangles 862 3. EXPLAIN IN2_MNLESE389847_U7M16L4.indd 862 Learning 18/04/14 9:01 Students conclude that the triangles are not alike. Do you agree or disagree? Why? Disagree; the triangle sum theorem, m $\angle N = 55^\circ$, so the triangles are similar to the AA similarity criterion. Applying Angle-Angle Similarity Explain 2 Applying Angle-Angle Similarity Architects and Contractors use properties similar to figures to find unknown dimensions, such as the correct height of the triangular roof. They may use an angle tool to check that the design angles are consistent with the corners in their plans. INTEGRATE MATHEMATICAL PRACTICES Focus on communication mp.3 Remind students that in the similarity of the triangle, they should identify parties that are proportionate, not congruent. Example 2 If possible, scroll to the length shown. BE First determine whether the $\triangle ABC \cong \triangle DBC$. By Alternate Interior Corners Theorem, $\angle A \cong \angle D$ and $\angle C \cong \angle B$, both $\triangle ABC \cong \triangle DBC$ by AA Triangle Similarity Theorem. E Find BE by resolving the proportion. © Houghton Mifflin Harcourt Publishing Company • Image Authors: ©John Lund / Drew Kelly / Blend Images / Corbis BD = BE BA BE A 36 54 = BE 54 36 54 54 54 54 = BE 54 54 36 BE = 81 $\triangle BDC$ RT Check = $\angle L$, $\triangle RSV \cong \triangle TRV$. $\triangle R$ divides both triangles, so $\angle R \cong \angle L$ by reflexive property Congruence. AA Triangle Similarity Theorem, $\triangle RST \cong \triangle RDU$. So, by S R S 10 8 12 Find RT solving the part V TU RT = $\angle RS$ SU V 12 RT = $\angle L$ RT = 15 _ 10 8 16 Module 16 863 Lesson 4 CO-STUDY IN2_MNLESE389847_U7M16L4.indd 863 Small group activity Do students work in small groups and draw diagrams to illustrate all these statements: all squares are similar; not all rectangles are similar; where the two polygons are compatible, they are also similar; not all the correct triangles are the same. 863 Lesson 16.4 18/04/14 21:01 Reflective 4. In example 2A, is there another way you can create a proportion to resolve be? BD BA Yes; = would also give the correct result be. Be BC 5. Discussion When you are asked to resolve y, the student creates a proportion as shown. Explain why this proportion is wrong. How should you adjust the proportion to give the right result? QUESTIONING STRATEGIES _ A y $\angle 14 = 8 = 10$ Variable y does not refer to the side triangle, but only 14 B 10 C How can you use AA similarity postulate to find unknown dimensions? You can use AA similarity to determine that the two triangles of two congruent pairs of corners are similar, and then write the proportions to find the unknown lengths of the sides. D off + 8 = 14 = would be the right way to resolve y. 8 10 8 VARIOUS COMMON ERRORS E Some students may use a false jad of points for writing a similarity statement. Compare the process with writing a conjugate statement and remind them to list the corresponding peaks in the same order. Your sixth time. The builders were given a design plan with a triangular roof as shown. Explain how he knows that the $\triangle AED \cong \triangle ABC$. Then find AB, 2 feet E 15 feet, C 7, 6 feet. B Corresponding corners theorem, $\triangle AED \cong \triangle ABC$ and $\triangle AED \cong \triangle ABC$ by AA Triangle Similarity Theorem. E Find BE by resolving the proportion. © Houghton Mifflin Harcourt Publishing Company • Image Authors: ©John Lund / Drew Kelly / Blend Images / Corbis BD = BE BA BE A 36 54 = BE 54 36 54 54 54 = BE 54 36 BE = 81 $\triangle BDC$ RT Check = $\angle L$, $\triangle RSV \cong \triangle TRV$. $\triangle R$ divides both triangles, so $\angle R \cong \angle L$ by reflexive property Congruence. AA Triangle Similarity Theorem, $\triangle RST \cong \triangle RDU$. So, by S R S 10 8 12 Find RT solving the part V TU RT = $\angle RS$ SU V 12 RT = $\angle L$ RT = 15 _ 10 8 16 Module 16 863 Lesson 4 CO-STUDY IN2_MNLESE389847_U7M16L4.indd 863 Connect Vocabulary associates the idea of proof to justify ideas in mathematics. You use the established rules and conventions to draw some conclusions. In real life, proof means showing something by gathering evidence through established rules and conventions. 865 Lesson 16.4 18/04/2014 21:01 Your Turn Questioning Strategies If possible, determine whether the given triangles are similar. Justify your answer. 10 C 5 10 6 F 11. H Two triangles cannot be proven to be similar. Although the 3 two given sides are proportionate, there are no G pairs attached to the congruent angles. Avoid common errors Pythagorean Theorem, NO = 6 and GH = 4. W Why are ASA and AAS not similarities between theorem? Both contain two pairs of matching angles, so the ASA and AAS triangles are already similar to the AA similar theorem. Some students may have difficulty identifying similar aspects because of the orientation of the numbers. Show these students how they can copy one triangle to a sheet of paper, then cut it out and rotate it so that the two triangles have the same orientation. HJ GJ GH so $\angle = \angle = \angle = \angle$, $\angle MNO \cong \angle GHI$ by MN 2 NO MSS Triangle SimilarityOrem. 10 J 5 N o G 3 H to develop the 12th EQ 10 J 5 N o G 3 H

AE? postu guarana DE and ___ theorem; AA Simil AD does not change the ratios of ED values $m\angle A$ does not \rightarrow what happens $\triangle ADE$, in this result. D along ac r triangles explai $\triangle ADE$ and les move 2. As you features simila Given a similar triang AE. (e) the use of a new AE' \rightarrow ___ does not change AD AD' Ratio DE and $=_e$ AD' DE' \rightarrow AD' values DE \rightarrow note AD AD' $=_e$ AD' value m $\angle A$, AC dragged east ad're with new D' because D is ns to m $\angle A$? if you drag, do not change C. What acid ns ratio 3. Move it. With acid values ; new two lessons 2 es worth m $\angle A$ chang \rightarrow .941 by AC Publishin Reflective © Houghton Mifflin Harcourt 1. Module 18 8L2 941 47. U7M1 ESE38984N IN2_MNLN 941 lesson 18.2 18/04/14 11:31 18/04/14 11:33 Explain 1 Find The Siphon and Co-like Angle Of EXPLORE Trigonometric Ratios Trigonometric ratio is the ratio between the two sides of the right triangle. You've already seen a trigonometric relationship, a tany. There are two additional trigonometric relationships, sine and cosine, which include the hypotenuse of the right triangle. Sine $\angle A$, written by sin A, is defined as: leg length opposite $\angle A$ BC sin A $=_e$ AB the length of hypotenuse $\angle A$ cos, written cos A, is defined as: leg length $\angle A$ AC cos A $=_e$ AB length of hypotenuse B INTEGRATE TECHNOLOGY These definitions can be used to calculate trigonometric ratios. Example 1 \heartsuit the correct triangle of student ratios is the opportunity to do research, either in a book or on the internet. D Write each corner sine and cosine as fractions and decimal places, rounded to the nearest thousand. ZD 15 E length of leg opposite $\angle D$ EF 8 sin D $=_e$ $=_e$ 0.471 DF 17 length of hypotenuse to integrate mathematical practices Focus on critical thinking MP.3 Can students investigate what happens in a 17 8 F ratio on the opposite side of the length of the hypothesis when the sharp angle reaches closer to 90°. When the acute angle approaches 0°, repeat the relationship between the length of the adjacent side and the length of the hypotheses, leg length adjacent to $\angle D$ 15 = 0.882 DE $=_e$ cos D $=_e$ 0.471 DF length of hypotenuse \heartsuit 15 F length of leg opposite $\angle D$ FE $=_e$ cos F $=_e$ 0.471 DF hypotenuse length 0.882 17 8 STRATEGIES 0.471 Reflect 4. What do you notice about the si likes and co-d'ors you've found? Do you think this relationship applies to every couple of sharp corners in the right triangle? Explain. sin D = cos F and cos D = sin F; this relationship always holds, because the leg opposite one fierce angle adjacent to the other. In the right triangle $\triangle PQR$ with hypotenuse 5, $m\angle Q = 90^\circ$ and PQ > QR, what are the values sin P and cos P? sin P = cos P = 3 if the measure of the acute angle of the right triangle does not change, but the side lengths of the triangle change, how will the ratios change? Explain. The values of the numerator and denominators change, but the ratios are equal to the opposite length of the hypothesis and the contiguous length, because the triangles are similar. © Houghton Mifflin Harcourt Publishing Company length of leg next to $\angle Q$ cos F $=_e$ 1 = length hypotenuse 17 5_4 EXPLAIN 1 5 Module 18 942 Find Sine and Cosine Angle Lesson 2 PROFESSIONAL DEVELOPMENT IN2_MNLNESE389847_U7M18L2 942 Mathematics Background Trigonometry is a branch of mathematics related to angle relationship triangles. The ancient Egyptians used trigonometry to restore the borders of the land after flooding the Nile River every year. Babylon uses trigonometry to measure the distance between nearby stars. Trigonometry is used in modern engineering, cartography, medical imaging and many other fields. 18/04/14 11:33 AVOID COMMON MISTAKES Students often use the wrong relationship with sine or cosine. Help students review these relationships using flash cards, mnemonics, or other memory tools. Encourage students to study or produce mnemonics. Sine and Cosine Ratios 942 Explain 2 POLLING STRATEGIES Using additional angles The acute angles of the correct triangle complement each other. Their trigonometric relationships are interrelated, as shown in the next relationship. If only you know that you have the right triangle sharp angle, how could you find a combination? The snare gives the opposite side of the relationship to the hypotenuse, so that you can create a right triangle of hypotenuse and foot that corresponds to the ratio. Then you can pythagorean theorem to find the length of the second leg, and use it to write a combination relationship. Trigonometric relationships of additional angles If $\angle A$ and $\angle B$ are acute angles in the right triangle, sin A = cos B and cos A = sin B. Thus, if ρ (theta) is the measure of an acute angle, then $\sin^\circ = \cos(90^\circ - \rho)$ and $\cos^\circ = \sin(90^\circ - \rho)$. (90 - 0°) A Do you think it is possible that the value of sine or cosine is greater than 1? Why or why not? This is not possible; because hypotenuse is the longest side of the right triangle, each ratio with the hypotenuse length as denominator is less than 1. ρ C You can use these to write equivalent expressions. Example 2 \heartsuit write each trigonometric expression. Given that sin 38° = 0.616, write the cosine in terms of an additional angle in the sine 38°. Then find an additional angle. Use the expression related to the trigonometric ratios of additional angles. sin ρ = $\cos(90^\circ - \rho)$ EXPLAIN 2. sin 38° = $\cos(90^\circ - 38^\circ)$ Simplify. sin 38° = $\cos 52^\circ$ Using Additional Angles Replace The Pain 39°. 0.616, because 52° QUESTIONING STRATEGIES Why sine and cosine are an additional angle of relationship? The relationship is right for the triangle. Since one angle must be a right angle, the other two corners must be upgraded, since the sum of the triangle angle dimensions is 180°. How can you write equivalent expressions sin x° using cosinus and cos y° using sine? Explain. Use the supplement to write sin x° = $\cos(90^\circ - x)$ and cos y° = $\sin(90^\circ - y)$. How does the relationship between sine and cosine in extra corners help resolve equations that include sine and cosine? Apply the fact that the total angle size is 90° to create an equation to solve unknown values. 943 Lesson 18.2 © Houghton Mifflin Harcourt Publishing Company So, the combination of an additional angle is about 0.616. 0.1 Considering that cos 60° = 0.5, write an additional angle in the sine according to 60° cosinus. Then find an extra angle in the sys. Use the expression related to the trigonometric ratios of additional angles. cos ρ = $\sin(90^\circ - \rho)$ (Substitute 60 on both sides. cos 60° = sin 90 - 60 Simplify the right side. cos 60° = sin 60 ° ° So, the si already angle is 0.5. Module 18 943 Lesson 2 collaborative learning IN2_MNLNESE389847_U7M18L2 943 Small group activity 18/04/14 11:33 Do students work in small groups to study the connection between the size of the angle and its sine, using geometry software or graph paper, rulers and protractors. They should draw several triangles with unit side lengths and an angle that increases. Those who use graph paper need to measure protractor and ruler. Let them determine how the sy sy sy changes as the size of the corner increases; then repeat cosine. Invite students to share their results and how they drew up their conclusions. Reflect collaborative learning 6. What can you infer from sine and cosine 45°? Explain. sin 45° = cos 45°; 45° complementary itself. 7. Discussion Is it possible that sine or cosine have an acute angle equal to 1? Explain. No, the right triangle hypotenuse is always longer than the legs, so lateral relationships Do students build full triangles with a metric side length on graph paper, then use the track to measure each sharp angle to the nearest degree. Invite students to an additional relationship between sy sy and co-compatibility for these triangles at each sharp angle, and then share their results with class. Your turn Write every trigonometric expression 8. Given that cos 73° = 0.454, write the sys at an additional angle. EXPLAIN 3 p = 73°, so that 90 - ρ = 27°. 27° = 0.454 9. Finding Side Lengths using Sine and Cosine Considering that sin 45° = 0.707, write together at an additional angle, ρ = 45°, so 90 - ρ = 45°, cos 45° = 0.707 Explain 3 INTEGRATE TECHNOLOGY Finding lateral lengths of use of Sine and Cosine It may be useful to look with students on how to evaluate phrases in the form of asin (x°) and because (y°) given values a, b, x and y using their calculators. You can use sine and cosine to solve real-world problems. An example of a 3 12-ft ramp is installed with a few steps to ensure wheelchair access to the library. The ramp makes an 11° angle with the ground. Find each dimension, the nearest tenth. C 12 ft B 9 ft Wall height x. Multiply both sides by 12. The length of the $\angle A$ AB sin A $=_e$ AC length hypotenuse Use sys definition. Substitute 11°, A x and 12 AC. 11° © Houghton Mifflin Harcourt Publishing Company 9 wall x x sin 11° = 12 12sin 11° = x QUESTIONING STRATEGIES Why is the trigonometric relationship useful for solving a real world problem involving right triangles? Sample response: Known lengths and angle measurements allow you to find unknown lengths that can be difficult to measure. If you use a trigonometric relationship, such as sine or cosine, to find the length of one leg of the right triangle, do you need to use a trigonometric relationship to find the length of the other leg? Explain. No, you can also use Pythagorean Theorem to find the other leg because you know the lengths of hypotenuse and one leg =. So, the height of the wall is about 2.3 feet. Module 18 944 Lesson 2 Differentiated Instruction IN2_MNLNESE389847_U7M18L2 944 Critical Thinking 18/04/14 11:32 Sixx Discuss how to use trigonometric relationships to prove that $x = \cos x$. Ask students if they find it surprising and why not. Sine and cosine Ratio 944 B EXPLAIN 4 Find the distance y that the ramp extends in front of the wall. Substitute 11°, y for AB and 12 AC. Finding Angle Measures Using Sine and Cosine Multiply both parties by 12. y cos 11° = 12 12 cos 11° = y = 11.8 Use a calculator to evaluate the expression. QUESTION STRATEGIES Leg length $\angle A$ cos A $=_e$ AB length of hypotenuse Use the term cosine. So, the ramp extends in front of the wall about 13.8 feet. In the equation $y = \sin^{-1} x$, explain what x and y in the equation, the x angle represents the siplay measure y°. To reflect 10. Can you find the height of the wall with the combination? Explain. x and because $\angle A$ and $\angle B$ complement each other, $m\angle C = 79^\circ$. Then cos 79° = 12 = 12cos 79° = 3.3 feet. Your turn on 11. Let's say the new regulation stipulates that the maximum angle of the wheelchair ramp is 8°. At least how long does the new ramp have to be? Round to the nearest tenth of a foot. C 2.3 ft z wall 8' B A Ramp must be at least long enough to create an 8° $\angle A$. BC 2.3 \rightarrow sin 8° = sin A = $\cos z = 16.5$ © Houghton Mifflin Harcourt Publishing Company Ramp must be at least 16.5 feet long. Explanation 4 Finding angle measurements using Sine and Cosine 5 = 1. However, you already know that 30° = 1. So you can triangle, sin A = 10 2 2 conclude that $m\angle A = 30^\circ$, 1 = 30°, and write sin -1 2 Expanding this idea, the inverse trigonometric ratio of the sine and cosine is defined as follows: () 10 C 5 B Considering the acute angle, $\angle A$, if sin A = x, then sin -1 x = m $\angle A$, read the inverse bus x cos A = x, then cos -1 x = m $\angle A$, read the inverse co-calculator to evaluate the inverse trigonometric expressions. Module 18 945 Lesson 2 LANGUAGE SUPPORT IN2_MNLNESE389847_U7M18L2 945 Connect Vocabulary Differentiation between Sine and Cosine Can Be Tricky for Some Students. Explain that a donkey can work together, as cooperation does in the word. Note that the ratio of the acute angle of the triangle involves an adjacent leg. Tell students to remember this by thinking of the adjacent leg as a reunion with a hypotenuse perspective. 945 Lesson 18.2 18.2 18.3 18/04/14 11:32 Example 4 © Houghton Mifflin Harcourt Publishing Company 9 wall x x sin 11° = 12 12sin 11° = x = 11.8 Use a calculator to evaluate the expression. QUESTION STRATEGIES Leg length $\angle A$ cos A $=_e$ AB length of hypotenuse Use the term cosine. So, the ramp extends in front of the wall about 13.8 feet. In the equation $y = \sin^{-1} x$, explain what x and y in the equation, the x angle represents the siplay measure y°. To reflect 10. Can you find the height of the wall with the combination? Explain. x and because $\angle A$ and $\angle B$ complement each other, $m\angle C = 79^\circ$. Then cos 79° = 12 = 12cos 79° = 3.3 feet. Your turn on 11. Let's say the new regulation stipulates that the maximum angle of the wheelchair ramp is 8°. At least how long does the new ramp have to be? Round to the nearest tenth of a foot. C 2.3 ft z wall 8' B A Ramp must be at least long enough to create an 8° $\angle A$. BC 2.3 \rightarrow sin 8° = sin A = $\cos z = 16.5$ © Houghton Mifflin Harcourt Publishing Company Ramp must be at least 16.5 feet long. Explanation 4 Finding angle measurements using Sine and Cosine 5 = 1. However, you already know that 30° = 1. So you can triangle, sin A = 10 2 2 conclude that $m\angle A = 30^\circ$, 1 = 30°, and write sin -1 x = m $\angle A$, read the inverse bus x cos A = x, then cos -1 x = m $\angle A$, read the inverse co-calculator to evaluate the inverse trigonometric expressions. Module 18 945 Lesson 2 LANGUAGE SUPPORT IN2_MNLNESE389847_U7M18L2 945 Connect Vocabulary Differentiation between Sine and Cosine Can Be Tricky for Some Students. Explain that a donkey can work together, as cooperation does in the word. Note that the ratio of the acute angle of the triangle involves an adjacent leg. Tell students to remember this by thinking of the adjacent leg as a reunion with a hypotenuse perspective. 945 Lesson 18.2 18.2 18.3 18/04/14 11:32 Example 4 © Houghton Mifflin Harcourt Publishing Company 9 wall x x sin 11° = 12 12sin 11° = x = 11.8 Use a calculator to evaluate the expression. QUESTION STRATEGIES Leg length $\angle A$ cos A $=_e$ AB length of hypotenuse Use the term cosine. So, the ramp extends in front of the wall about 13.8 feet. In the equation $y = \sin^{-1} x$, explain what x and y in the equation, the x angle represents the siplay measure y°. To reflect 10. Can you find the height of the wall with the combination? Explain. x and because $\angle A$ and $\angle B$ complement each other, $m\angle C = 79^\circ$. Then cos 79° = 12 = 12cos 79° = 3.3 feet. Your turn on 11. Let's say the new regulation stipulates that the maximum angle of the wheelchair ramp is 8°. At least how long does the new ramp have to be? Round to the nearest tenth of a foot. C 2.3 ft z wall 8' B A Ramp must be at least long enough to create an 8° $\angle A$. BC 2.3 \rightarrow sin 8° = sin A = $\cos z = 16.5$ © Houghton Mifflin Harcourt Publishing Company Ramp must be at least 16.5 feet long. Explanation 4 Finding angle measurements using Sine and Cosine 5 = 1. However, you already know that 30° = 1. So you can triangle, sin A = 10 2 2 conclude that $m\angle A = 30^\circ$, 1 = 30°, and write sin -1 x = m $\angle A$, read the inverse bus x cos A = x, then cos -1 x = m $\angle A$, read the inverse co-calculator to evaluate the inverse trigonometric expressions. Module 18 945 Lesson 2 LANGUAGE SUPPORT IN2_MNLNESE389847_U7M18L2 945 Connect Vocabulary Differentiation between Sine and Cosine Can Be Tricky for Some Students. Explain that a donkey can work together, as cooperation does in the word. Note that the ratio of the acute angle of the triangle involves an adjacent leg. Tell students to remember this by thinking of the adjacent leg as a reunion with a hypotenuse perspective. 945 Lesson 18.2 18.2 18.3 18/04/14 11:32 Example 4 © Houghton Mifflin Harcourt Publishing Company 9 wall x x sin 11° = 12 12sin 11° = x = 11.8 Use a calculator to evaluate the expression. QUESTION STRATEGIES Leg length $\angle A$ cos A $=_e$ AB length of hypotenuse Use the term cosine. So, the ramp extends in front of the wall about 13.8 feet. In the equation $y = \sin^{-1} x$, explain what x and y in the equation, the x angle represents the siplay measure y°. To reflect 10. Can you find the height of the wall with the combination? Explain. x and because $\angle A$ and $\angle B$ complement each other, $m\angle C = 79^\circ$. Then cos 79° = 12 = 12cos 79° = 3.3 feet. Your turn on 11. Let's say the new regulation stipulates that the maximum angle of the wheelchair ramp is 8°. At least how long does the new ramp have to be? Round to the nearest tenth of a foot. C 2.3 ft z wall 8' B A Ramp must be at least long enough to create an 8° $\angle A$. BC 2.3 \rightarrow sin 8° = sin A = $\cos z = 16.5$ © Houghton Mifflin Harcourt Publishing Company Ramp must be at least 16.5 feet long. Explanation 4 Finding angle measurements using Sine and Cosine 5 = 1. However, you already know that 30° = 1. So you can triangle, sin A = 10 2 2 conclude that $m\angle A = 30^\circ$, 1 = 30°, and write sin -1 x = m $\angle A$, read the inverse bus x cos A = x, then cos -1 x = m $\angle A$, read the inverse co-calculator to evaluate the inverse trigonometric expressions. Module 18 945 Lesson 2 LANGUAGE SUPPORT IN2_MNLNESE389847_U7M18L2 945 Connect Vocabulary Differentiation between Sine and Cosine Can Be Tricky for Some Students. Explain that a donkey can work together, as cooperation does in the word. Note that the ratio of the acute angle of the triangle involves an adjacent leg. Tell students to remember this by thinking of the adjacent leg as a reunion with a hypotenuse perspective. 945 Lesson 18.2 18.2 18.3 18/04/14 11:32 Example 4 © Houghton Mifflin Harcourt Publishing Company 9 wall x x sin 11° = 12 12sin 11° = x = 11.8 Use a calculator to evaluate the expression. QUESTION STRATEGIES Leg length $\angle A$ cos A $=_e$ AB length of hypotenuse Use the term cosine. So, the ramp extends in front of the wall about 13.8 feet. In the equation $y = \sin^{-1} x$, explain what x and y in the equation, the x angle represents the siplay measure y°. To reflect 10. Can you find the height of the wall with the combination? Explain. x and because $\angle A$ and $\angle B$ complement each other, $m\angle C = 79^\circ$. Then cos 79° = 12 = 12cos 79° = 3.3 feet. Your turn on 11. Let's say the new regulation stipulates that the maximum angle of the wheelchair ramp is 8°. At least how long does the new ramp have to be? Round to the nearest tenth of a foot. C 2.3 ft z wall 8' B A Ramp must be at least long enough to create an 8° $\angle A$. BC 2.3 \rightarrow sin 8° = sin A = $\cos z = 16.5$ © Houghton Mifflin Harcourt Publishing Company Ramp must be at least 16.5 feet long. Explanation 4 Finding angle measurements using Sine and Cosine 5 = 1. However, you already know that 30° = 1. So you can triangle, sin A = 10 2 2 conclude that $m\angle A = 30^\circ$, 1 = 30°, and write sin -1 x = m $\angle A$, read the inverse bus x cos A = x, then cos -1 x = m $\angle A$, read the inverse co-calculator to evaluate the inverse trigonometric expressions. Module 18 945 Lesson 2 LANGUAGE SUPPORT IN2_MNLNESE389847_U7M18L2 945 Connect Vocabulary Differentiation between Sine and Cosine Can Be Tricky for Some Students. Explain that a donkey can work together, as cooperation does in the word. Note that the ratio of the acute angle of the triangle involves an adjacent leg. Tell students to remember this by thinking of the adjacent leg as a reunion with a hypotenuse perspective. 945 Lesson 18.2 18.2 18.3 18/04/14 11:32 Example 4 © Houghton Mifflin Harcourt Publishing Company 9 wall x x sin 11° = 12 12sin 11° = x = 11.8 Use a calculator to evaluate the expression. QUESTION STRATEGIES Leg length $\angle A$ cos A $=_e$ AB length of hypotenuse Use the term cosine. So, the ramp extends in front of the wall about 13.8 feet. In the equation $y = \sin^{-1} x$, explain what x and y in the equation, the x angle represents the siplay measure y°. To reflect 10. Can you find the height of the wall with the combination? Explain. x and because $\angle A$ and $\angle B$ complement each other, $m\angle C = 79^\circ$. Then cos 79° = 12 = 12cos 79° = 3.3 feet. Your turn on 11. Let's say the new regulation stipulates that the maximum angle of the wheelchair ramp is 8°. At least how long does the new ramp have to be? Round to the nearest tenth of a foot. C 2.3 ft z wall 8' B A Ramp must be at least long enough to create an 8° $\angle A$. BC 2.3 \rightarrow sin 8° = sin A = $\cos z = 16.5$ © Houghton Mifflin Harcourt Publishing Company Ramp must be at least 16.5 feet long. Explanation 4 Finding angle measurements using Sine and Cosine 5 = 1. However, you already know that 30° = 1. So you can triangle, sin A = 10 2 2 conclude that $m\angle A = 30^\circ$, 1 = 30°, and write sin -1 x = m $\angle A$, read the inverse bus x cos A = x, then cos -1 x = m $\angle A$, read the inverse co-calculator to evaluate the inverse trigonometric expressions. Module 18 945 Lesson 2 LANGUAGE SUPPORT IN2_MNLNESE389847_U7M18L2 945 Connect Vocabulary Differentiation between Sine and Cosine Can Be Tricky for Some Students. Explain that a donkey can work together, as cooperation does in the word. Note that the ratio of the acute angle of the triangle involves an adjacent leg. Tell students to remember this by thinking of the adjacent leg as a reunion with a hypotenuse perspective. 945 Lesson 18.2 18.2 18.3 18/04/14 11:32 Example 4 © Houghton Mifflin Harcourt Publishing Company 9 wall x x sin 11° = 12 12sin 11° = x = 11.8 Use a calculator to evaluate the expression. QUESTION STRATEGIES Leg length $\angle A$ cos A $=_e$ AB length of hypotenuse Use the term cosine. So, the ramp extends in front of the wall about 13.8 feet. In the equation $y = \sin^{-1} x$, explain what x and y in the equation, the x angle represents the siplay measure y°. To reflect 10. Can you find the height of the wall with the combination? Explain. x and because $\angle A$ and $\angle B$ complement each other, $m\angle C = 79^\circ$. Then cos 79° = 12 = 12cos 79° = 3.3 feet. Your turn on 11. Let's say the new regulation stipulates that the maximum angle of the wheelchair ramp is 8°. At least how long does the new ramp have to be? Round to the nearest tenth of a foot. C 2.3 ft z wall 8' B A Ramp must be at least long enough to create an 8° $\angle A$. BC 2.3 \rightarrow sin 8° = sin A = $\cos z = 16.5$ © Houghton Mifflin Harcourt Publishing Company Ramp must be at least 16.5 feet long. Explanation 4 Finding angle measurements using Sine and Cosine 5 = 1. However, you already know that 30° = 1. So you can triangle, sin A = 10 2 2 conclude that $m\angle A = 30^\circ$, 1 = 30°, and write sin -1 x = m $\angle A$, read the inverse bus x cos A = x, then cos -1 x = m $\angle A$, read the inverse co-calculator to evaluate the inverse trigonometric expressions. Module 18 945 Lesson 2 LANGUAGE SUPPORT IN2_MNLNESE389847_U7M18L2 945 Connect Vocabulary Differentiation between Sine and Cosine Can Be Tricky for Some Students. Explain that a donkey can work together, as cooperation does in the word. Note that the ratio of the acute angle of the triangle involves an adjacent leg. Tell students to remember this by thinking of the adjacent leg as a reunion with a hypotenuse perspective. 945 Lesson 18.2 18.2 18.3 18/04/14 11:32 Example 4 © Houghton Mifflin Harcourt Publishing Company 9 wall x x sin 11° = 12 12sin 11° = x = 11.8 Use a calculator to evaluate the expression. QUESTION STRATEGIES Leg length $\angle A$ cos A $=_e$ AB length of hypotenuse Use the term cosine. So, the ramp extends in front of the wall about 13.8 feet. In the equation $y = \sin^{-1} x$, explain what x and y in the equation, the x angle represents the siplay measure y°. To reflect 10. Can you find the height of the wall with the combination? Explain. x and because $\angle A$ and $\angle B$ complement each other, $m\angle C = 79^\circ$. Then cos 79° = 12 = 12cos 79

IN2_MNLESE389847_U7M18L3 962 962 Lesson 3 18/04/14 11:49 special right triangles 962 _ 19. Right Triangle the leg is exactly $\sqrt{3}$ times the length of the leg. The reversentangence trigonometric ratio shall be demonstrated to show that the averse angles are 30° and 60° . BC, use the reverse tangent ratio: Considering: BC = AC $\sqrt{3}$. Because tan A = BC / AC $\sqrt{3}$ BC / tan A = $\sqrt{3}$ AC AC m \angle A = tan -1 $\sqrt{3}$ = 60° - A \angle A and \angle B additional, so that m \angle B = 90° - 60° = 30° AC Algebra Find x value in each right triangle. 20. 21. C 5 - B x 3 L x A - Since the longer leg is $\sqrt{3}$ times shorter than the length of the leg, \angle ABC is a 30° - 60° - 90° triangle. Therefore (3x - 25)/2 $\sqrt{2}$ x K - Since the hypotenuse is $\sqrt{2}$ times longer than one leg, \angle JKL is a 45° - 45° - 90° triangle. Therefore, _ BC = 2AC JK = KL x $\sqrt{2}$ = (3x - 25) $\sqrt{2}$ x = 2(3x - 5) $\sqrt{2}$ x = 6 = x \times 50 = 50 = 5 x © houghton Mifflin Harcourt Publishing Company 10 x sides right triangle 22. Explain the error Charlene tries to find unknown _ with 30° acute angle, with hypotenuse measures 12/2. Identify, explain, and correct Charlene's error. 12/2 P Module 18 IN2_MNLESE389847_U7M18L3 963 Lesson 18.3 12 R 6/2 - Charlene appears to have used a ratio of 1/2 \angle 2, while the correct ratio of the 30°-60°-90° triangle is 1:3:2. PR = 6/2 = 3, correct, but QR = PR $\sqrt{3}$ = (6/2) $\sqrt{3}$ = 6 $\sqrt{6}$. 963 Q 30° - 963 lesson 3 18/04/14 11:49 23. Represent the Real-World Problems Honeycomb blinks form a string of almost regular hexagons when viewed end-on. About how much material, the nearest ten square centimeters, is needed for each 3.2 cm deep chamber honeycomb blind, which is 125 centimeters wide? (Hint: Draw a picture. The normal hexagon can be divided into six split flasks, _ . 3.2 cm... 125 cm B 3.2 cm A C _ 1 \angle ABC is a 30° - 60° - 90° triangle and BC = (3,2 cm) = 1,6 cm. Therefore, 2 bc cos 30° = AB $\sqrt{3}$ 1,6 cm = 2 AB = 3,2 $\sqrt{3}$ = 5,542 cm _ - The amount of material needed is hexagon \times width of the blind: 24. Which of these numbers are two of the three half length of the right triangle with an integer value? (Hint: For positive integers a, b, and c, the side lengths of the right triangle are only if a, b and c are the side lengths of the right triangle.) A. 15, 18, True False B. 15, 20 True False C. 16, 20 True False E. 16, 24 True False A. Vale; 15 = (3)5 and 18 = (3)6; 5 \times 6 = 2 \times 5 = 36 = 25 - 1, and neither is the perfect square. B. false; 15 = 15(1) and 30 = 15(2); 1,2 \times 2 = 2, and also there is no perfect square. © Houghton Mifflin Harcourt Publishing Company • Image items: ©Exactostock/Superstock 6(AB) \times width = 6(5,542) \times 125 = 4160 cm 2 C. True: 15 = 3(5) and 39 = 3(13); 5, 12, 13 in Pythagorean D. True; 16 = 4(4) and 20 = 4(5); 3, 4, 5 is pythagorean triple. E. False; 16 = 8(2) and 24 = 8(3); 2, 2 + 3 = 13 and 3, 2 - 2 = 5, and also there is no perfect square. Module 18 IN2_MNLESE389847_U7M18L3 964 964 lesson 3 18/04/14 11:49 special right-hand triangles 964 PEER Mathematical ideal Transmission Are the three sides of the right triangle odd integers? Explain. Invite students to use special right-hand triangles to form several inverse trigonometric problems until 1 January 2015. Ask them to exchange and evaluate, for example, sin -1 2 to solve problems with another pair of students. Invite students to use a calculator to check their work. No, if the two shorter side lengths are odd, their squares are odd because the odd number square is always odd. However, the sum of these squares is even because the sum of the two odd numbers is always even. Therefore, the sum of the squares of the two shorter side length squares cannot itself be an odd number check box. 26. Make a guess Use spreadsheet software to explore this question: are there any sets of positive integers a, b and c such as 3 + b = 3 + c? You can start with these formulas: JOURNAL Invite students to summa the same information they know about special right-wing triangles. Remind them to include a chart that sums up the trigonometric relationships for the corresponding angles and charts that support these ratios. © Houghton Mifflin Harcourt Publishing Company Actually does not have a set of positive integers a, b and c so that 3 + b = c, but it is really very difficult to prove. Students should be able to expand the spreadsheet example by experimenting with triple threes with different smallest numbers, changing the value in cell A1; for example, module 18 IN2_MNLESE389847_U7M18L3 965 lesson 18.3 965 lesson 3 18/04/14 11:49 PEER Mathematical ideal Transmission Are the three sides of the right triangle odd integers? Explain. Invite students to focus on critical thinking mp.3 if you look at the list of Pythagorean Triples, great 1. Is it true that (small area) + (average area) = (large area)? Explain. 2. If the circles were pythagorean triple 5-12-13 based radii, be true above the equation above? Explain. You will notice that at least one number makes up a triple is even. Does it have to apply to all Pythagorean triples? Explain. - yes, I don't know. Sample Reply: The Odd Number check box is always odd. The sum of the two odd numbers is always flat. So, if a and b are both odd, 2 + b 2 must be uniform, which means that c must also be uniform. 3. The three Kate circles have a, (b) and (c) radius where a, b and c form Pythagorean triple (2 + b = 2 + c). Indicate that the sum of the areas of small and medium circles is equal to the area of the large circle. 5. Explain the difference in your results in Exercises 3 and 4. 1, yes; small area + average area = 9 + 2 + 16 + 2 = 25 = large area 2, yes, I don't know; small area + average area = 25 + 2 + 144 in 2 = 169 in 2 - large area 3. small area + average area = a + 2 + b - 2 = a + 2 + b = c = 2 = large area 1 2 4. No, no small volume + average volume = 36 in 3 + 85 in 3 = 121 in 3 = 166 in 3 3 3 3 (large area) _ 5. Possible answer: The figures are squared in both the Pythagorean theorem and the formula area circle. In the sphere volume formula, the numbers are cubed. There is no theorem analogous to Pythagorean theorem cube numbers. Module 18 © Houghton Mifflin Harcourt Publishing Company • Image Credit: ©lewis33/StockPhoto.com 4. Kate decided to go to the beach ball business. Sticking to his Pythagorean principles, he starts with three spherical beach balls with a small ball with a radius of 3 in., the middle ball with a radius of 4 in., and a big ball with a radius of 5 in. Is it true that (small volume) + (medium volume) = (large volume)? Show me your work. Hour 3 966 EXTENSION ACTIVITY IN2_MNLESE389847_U7M18L3 966 Select two integers m and n, so m \neq n. Make a table as follows: at least 10 pairs of values m and n: M n 2 - m 2 2mm n 2 + m 2 Pythagorean Triple? 1 2 3 4 5 Yes Describe your results and use algebra to explain them. m and n always create pythagorean triple. (n - 2) m 2 + (2mn) = n = 4 - 2n 2m + 2 + 4m = 2(n + 2) 18/04/14 11:49 Scoring Rubric 2 points: The student's response is accurate and complete execution of the task or tasks. 1 point: The student's response contains the characteristics of the appropriate response, but is invalid. 0 points: The student's response does not include the characteristics of the relevant response. Special Right Triangles 966 LESSON 18.4 Name Problem Solving Trigonometry Class Date 18.4 Trigonometry Problem Solving Important Question: How Can You Solve The Right Triangle? Source Locker Common Core Math Standards Student is expected: COMMON CORE Explore G-SRT. C.8 Use trigonometric relationships and Pythagorean theorem to solve the right triangles to solve implementation problems. So is G-SRT. D.9(+), G-GPE. B.7 _ Let's say you draw a height AD on the side of BC Then write the equation using the trigonometric ratio \angle C, height h \angle ABC and the length of one of its sides. Mathematical practice COMMON CORE By inferring the area formula you can use trigonometry to find the area of the triangle without knowing its height. b. Language goal C Explain to the partner how to solve the right triangle and how to solve the correct triangle at coordinate level, sin C = DEAL B Important question: How can you solve the right triangle? C b c C B a h D \angle h = AC b Resol your equation from Step A h b sin C = h Fill this formula in area \triangle ABC in terms of h and a second its lateral lengths: Area = _ 2 © Houghton Mifflin Harcourt Publishing Company You can use a trigonometric ratio to find lateral lengths or their inverse ratios to find angular measures; Pythagorean theorem allows you to find the third side length; you can use the fact that sharp corners complement; If the triangle is at coordinate level, you can use a distance formula to find the side lengths. MP.2 Justification of your expression h from Step B to your formula step C. D Substitute _ 1 ab sin C 2 Reflective 1. Does the found area formula work if \angle C is the correct angle? Explain. 1 Yes: in this case sin C = sin 90° = 1, so the formula becomes Area = _ ab, and it is correct 2, because a and b are now the base and height \angle ABC. PREVIEW: LESSON PERFORMANCE TASK View the Include online section. Discuss the photo. Ask students if they know why the special procedure for water is called H 2O. Then, check the hour performance task. Module 18 must be EDIT-Chan NO Key=NL-A; CA-Correction Lesson 4 967 gh File info made thru Date classing blm Sovli 18.4 Pr Trigonometry named IN2_MNLESE389847_U7M18L4 967 HARDCOVER PAGES 967,980 Resource Locker? es correct stright right triangl you solved solve how can orean Theorem: Pythag Esential relationships and trigonometric D.9(+), G-GPE. B.7 COMMON G-SRT. C.8 Use CORE ms. Also G-SRT. Probe formula used. The area of its height fire 1 knowing le without triangl Discover a using area to equalize to find your sides. \triangle ABC. Then write trigonometr one You can use _ length bc on, and e AD side h \triangle ABC draw bottomed \triangle C, height Let's say you termic ratio trigonometr A h b \angle B C Watch for hard cover student edition page numbers for this lesson. c b c a C D a _ AD = h b sin C = AC 1 step from the equation Resolve your h b sin C = A h, and in terms of the area \triangle ABC la its formu 1 ah _ Complete s: Area = 2 C, its side length la from Step second to step second your formu Step B into h from expression tute your y g Compan - Substi _ 1 ab sin C © Houghton Mifflin Harcourt Publishing Company 2 _ n, this angle? Explai Area = 12 ab, and is right becomes work when \angle C formula la you = 1, so the area formu Is . C = sin 90° ABC and emision price Yes; in this base b is now from a and reflect 1. is the correct lesson 4 967 module 18 8L4 967 47_U7M1 ESE38989 IN2_MNL 967 lesson 18.4 19/04/14 12:02 AM 19/04/14 12:03 AM Let's say you used a trigonometric ratio \angle B, h and different sides. How would that change your findings? What does it tell you about the choice of party and attached angle? 2. Examine step C would be the same, but other steps would change: AD h = sin C = B = AB sin C = B = 1 Area = ac sin B You can select different sides and add an angle and derive a little different _ Infering Area Formula _ INTEGRATE INTO THE TECHNOLOGY FORMULA AREA, but in the same format. Explain 1 Students have the opportunity to study activities either in the book or on the Internet. Using the Area Formula to integrate the TECHNOLOGY Area Formula for the Triangle in terms of its lateral lengths area \triangle ABC sides a, b and c can be found using the lengths of the two sides and the sine attached angle: Area = _ 12 bc sin A, Area = _ 12 ab sin B or Area = _ 12 ab sin C. Students are familiar with the trigonometric ratio of 0° to 90° . Ask them to graph y = sin x 0° to 180° using their graph calculators to see that the ratios are defined for angles greater (and smaller) than 90° . C a b c A You can use any sub formula to find the triangle area, taking into account two side lengths and the size of the corner attached. Example 1 POLLING STRATEGIES Find each triangle area for the nearest tenth. \angle trigonometric relationships are defined by better triangles. Why does a region formula work for all types of triangles when it uses a sy msy relationship? The formula works because when height or height is plotted in the triangle area to apply a normal formula, a better triangle is created. 3, 2 in 142° 4, 7 in if the angle known \angle C, 1 ab sin C. Replace in The Formula Area = _ 2 Evaluate by rounding to the nearest tenth. © Houghton Mifflin Harcourt Publishing Company 1 PROFESSIONAL DEVELOPMENT IN2_MNLESE389847_U7M18L4 968 Integrate Mathematical Practices This lesson provides an opportunity to engage in mathematical practice in MP.2, which invites students to cause in an abstract and quantitative way. Students point to the triangle region formula by recognizing the connections that arise inside the triangle when building height. They apply this formula to a wide range of When students solve the right triangle, they need to identify the connections that can be used to find missing measures, and they can often choose which of the three reverse trigonometric relationships to apply. 19/04/14 12:03 AVOID COMMON MISTAKES Students may find it difficult to replace values in the sine area of the formula chart. Emphasize that both sides are both at the corner. Or the angle is attached to the angle formed by the sides of the triangle. Fix the trigonometry problem 968 in \triangle DEF, DE = 9 in., DF = 13 in., and m \angle D = 57°. B QUESTIONING STRATEGIES Draw \triangle DEF and check that \angle D is an added angle. Why is the siuse area formula useful when there is already a formula for the triangle area? This provides another method to find the area of the triangle without having to build the height. E9 in. D 57° Why does the angle have to be an angle to use the sine region formula? The formula is derived by the construction of a better triangle with the height at the angle and hypotenon at the corner to allow the sy gys ratio. F 13 in. () 1 (DE) DF sin D Area = _ 2 1 9 13 sin 57° Area = _ 2 Write the region formula according to \triangle DEF. Replace area in formula. Region = 49.1 inches 2 Rate, rounded to the nearest tenth. Your turn Find each triangle area for the next tenth. 3. CONNECT VOCABULARY 12 mm Remind students that the second word of the height of the triangle is its height, one version of the sine area formula to use a formula to find any triangle region. 15 mm Be known side lengths a and b. a = 12 mm and b = 15 mm Be the known angle \angle C. m \angle C = 34° 1 Surface area = (12)(15)sin 34° 2 Area = 50,3 mm 2 1 Replace in the formula Area = _ ab sin C. Evaluate, rounded to the nearest tenth. © Houghton Mifflin Harcourt Publishing Company 1 INTEGRATE INTO THE TECHNOLOGY FORMULA AREA, but in the same format. Explain 1 Students have the opportunity to study activities either in the book or on the Internet. Using the Area Formula to integrate the TECHNOLOGY Area Formula for the Triangle in terms of its lateral lengths area \triangle ABC sides a, b and c can be found using the lengths of the two sides and the sine attached angle: Area = _ 12 bc sin A, Area = _ 12 ab sin B or Area = _ 12 ab sin C. Students are familiar with the trigonometric ratio of 0° to 90° . Ask them to graph y = sin x 0° to 180° using their graph calculators to see that the ratios are defined for angles greater (and smaller) than 90° . C a b c A You can use any sub formula to find the triangle area, taking into account two side lengths and the size of the corner attached. Example 1 POLLING STRATEGIES Find each triangle area for the nearest tenth. © Houghton Mifflin Harcourt Publishing Company 1 INTEGRATE INTO THE TECHNOLOGY FORMULA AREA, but in the same format. Explain 1 Students have the opportunity to study activities either in the book or on the Internet. Using the Area Formula to integrate the TECHNOLOGY Area Formula for the Triangle in terms of its lateral lengths area \triangle ABC sides a, b and c can be found using the lengths of the two sides and the sine attached angle: Area = _ 12 bc sin A, Area = _ 12 ab sin B or Area = _ 12 ab sin C. Students are familiar with the trigonometric ratio of 0° to 90° . Ask them to graph y = sin x 0° to 180° using their graph calculators to see that the ratios are defined for angles greater (and smaller) than 90° . C a b c A You can use any sub formula to find the triangle area, taking into account two side lengths and the size of the corner attached. Example 1 POLLING STRATEGIES Find each triangle area for the nearest tenth. © Houghton Mifflin Harcourt Publishing Company 1 INTEGRATE INTO THE TECHNOLOGY FORMULA AREA, but in the same format. Explain 1 Students have the opportunity to study activities either in the book or on the Internet. Using the Area Formula to integrate the TECHNOLOGY Area Formula for the Triangle in terms of its lateral lengths area \triangle ABC sides a, b and c can be found using the lengths of the two sides and the sine attached angle: Area = _ 12 bc sin A, Area = _ 12 ab sin B or Area = _ 12 ab sin C. Students are familiar with the trigonometric ratio of 0° to 90° . Ask them to graph y = sin x 0° to 180° using their graph calculators to see that the ratios are defined for angles greater (and smaller) than 90° . C a b c A You can use any sub formula to find the triangle area, taking into account two side lengths and the size of the corner attached. Example 1 POLLING STRATEGIES Find each triangle area for the nearest tenth. © Houghton Mifflin Harcourt Publishing Company 1 INTEGRATE INTO THE TECHNOLOGY FORMULA AREA, but in the same format. Explain 1 Students have the opportunity to study activities either in the book or on the Internet. Using the Area Formula to integrate the TECHNOLOGY Area Formula for the Triangle in terms of its lateral lengths area \triangle ABC sides a, b and c can be found using the lengths of the two sides and the sine attached angle: Area = _ 12 bc sin A, Area = _ 12 ab sin B or Area = _ 12 ab sin C. Students are familiar with the trigonometric ratio of 0° to 90° . Ask them to graph y = sin x 0° to 180° using their graph calculators to see that the ratios are defined for angles greater (and smaller) than 90° . C a b c A You can use any sub formula to find the triangle area, taking into account two side lengths and the size of the corner attached. Example 1 POLLING STRATEGIES Find each triangle area for the nearest tenth. © Houghton Mifflin Harcourt Publishing Company 1 INTEGRATE INTO THE TECHNOLOGY FORMULA AREA, but in the same format. Explain 1 Students have the opportunity to study activities either in the book or on the Internet. Using the Area Formula to integrate the TECHNOLOGY Area Formula for the Triangle in terms of its lateral lengths area \triangle ABC sides a, b and c can be found using the lengths of the two sides and the sine attached angle: Area = _ 12 bc sin A, Area = _ 12 ab sin B or Area = _ 12 ab sin C. Students are familiar with the trigonometric ratio of 0° to 90° . Ask them to graph y = sin x 0° to 180° using their graph calculators to see that the ratios are defined for angles greater (and smaller) than 90° . C a b c A You can use any sub formula to find the triangle area, taking into account two side lengths and the size of the corner attached. Example 1 POLLING STRATEGIES Find each triangle area for the nearest tenth. © Houghton Mifflin Harcourt Publishing Company 1 INTEGRATE INTO THE TECHNOLOGY FORMULA AREA, but in the same format. Explain 1 Students have the opportunity to study activities either in the book or on the Internet. Using the Area Formula to integrate the TECHNOLOGY Area Formula for the Triangle in terms of its lateral lengths area \triangle ABC sides a, b and c can be found using the lengths of the two sides and the sine attached angle: Area = _ 12 bc sin A, Area = _ 12 ab sin B or Area = _ 12 ab sin C. Students are familiar with the trigonometric ratio of 0° to 90° . Ask them to graph y = sin x 0° to 180° using their graph calculators to see that the ratios are defined for angles greater (and smaller) than 90° . C a b c A You can use any sub formula to find the triangle area, taking into account two side lengths and the size of the corner attached. Example 1 POLLING STRATEGIES Find each triangle area for the nearest tenth. © Houghton Mifflin Harcourt Publishing Company 1 INTEGRATE INTO THE TECHNOLOGY FORMULA AREA, but in the same format. Explain 1 Students have the opportunity to study activities either in the book or on the Internet. Using the Area Formula to integrate the TECHNOLOGY Area Formula for the Triangle in terms of its lateral lengths area \triangle ABC sides a, b and c can be found using the lengths of the two sides and the sine attached angle: Area = _ 12 bc sin A, Area = _ 12 ab sin B or Area = _ 12 ab sin C. Students are familiar with the trigonometric ratio of 0° to 90° . Ask them to graph y = sin x 0° to 180° using their graph calculators to see that the ratios are defined for angles greater (and smaller) than 90° . C a b c A You can use any sub formula to find the triangle area, taking into account two side lengths and the size of the corner attached. Example 1 POLLING STRATEGIES Find each triangle area for the nearest tenth. © Houghton Mifflin Harcourt Publishing Company 1 INTEGRATE INTO THE TECHNOLOGY FORMULA AREA, but in the same format. Explain 1 Students have the opportunity to study activities either in the book or on the Internet. Using the Area Formula to integrate the TECHNOLOGY Area Formula for the Triangle in terms of its lateral lengths area \triangle ABC sides a, b and c can be found using the lengths of the two sides and the sine attached angle: Area = _ 12 bc sin A, Area = _ 12 ab sin B or Area = _ 12 ab sin C. Students are familiar with the trigonometric ratio of 0° to 90° . Ask them to graph y = sin x 0° to 180° using their graph calculators to see that the ratios are defined for angles greater (and smaller) than 90° . C a b c A You can use any sub formula to find the triangle area, taking into account two side lengths and the size of the corner attached. Example 1 POLLING STRATEGIES Find each triangle area for the nearest tenth. © Houghton Mifflin Harcourt Publishing Company 1 INTEGRATE INTO THE TECHNOLOGY FORMULA AREA, but in the same format. Explain 1 Students have the opportunity to study activities either in the book or on the Internet. Using the Area Formula to integrate the TECHNOLOGY Area Formula for the Triangle in terms of its lateral lengths area \triangle ABC sides a, b and c can be found using the lengths of the two sides and the sine attached angle: Area = _ 12 bc sin A, Area = _ 12 ab sin B or Area = _ 12 ab sin C. Students are familiar with the trigonometric ratio of 0° to 90° . Ask them to graph y = sin x 0° to 180° using their graph calculators to see that the ratios are defined for angles greater (and smaller) than 90° . C a b c A You can use any sub formula to find the triangle area, taking into account two side lengths and the size of the corner attached. Example 1 POLLING STRATEGIES Find each triangle area for the nearest tenth. © Houghton Mifflin Harcourt Publishing Company 1 INTEGRATE INTO THE TECHNOLOGY FORMULA AREA, but in the same format. Explain 1 Students have the opportunity to study activities either in the book or on the Internet. Using the Area Formula to integrate the TECHNOLOGY Area Formula for the Triangle in terms of its lateral lengths area \triangle ABC sides a, b and c can be found using the lengths of the two sides and the sine attached angle: Area = _ 12 bc sin A, Area = _ 12 ab sin B or Area = _ 12 ab sin C. Students are familiar with the trigonometric ratio of 0° to 90° . Ask them to graph y = sin x 0° to 180° using their graph calculators to see that the ratios are defined for angles greater (and smaller) than 90° . C a b c A You can use any sub formula to find the triangle area, taking into account two side lengths and the size of the corner attached. Example 1 POLLING STRATEGIES Find each triangle area for the nearest tenth. © Houghton Mifflin Harcourt Publishing Company 1 INTEGRATE INTO THE TECHNOLOGY FORMULA AREA, but in the same format. Explain 1 Students have the opportunity to study activities either in the book or on the Internet. Using the Area Formula to integrate the TECHNOLOGY Area Formula for the Triangle in terms of its lateral lengths area \triangle ABC sides a, b and c can be found using the lengths of the two sides and the sine attached angle: Area = _ 12 bc sin A, Area = _ 12 ab sin B or Area = _ 12 ab sin C. Students are familiar with the trigonometric ratio of 0° to 90° . Ask them to graph y = sin x 0° to 180° using their graph calculators to see that the ratios are defined for angles greater (and smaller) than 90° . C a b c A You can use any sub formula to find the triangle area, taking into account

doing so, students are likely to see a link between the two solutions. Using Pythagorean Identity 984 Reflect WORK 9. DOUBT DISCUSSION STRATEGIES In Part A of this example, when you multiplied the value of the tan given by cosi calculated value to find the blue value, was the product positive or negative? why is the result you expect. The product was positive. This is expected because the blue should be a positive quadrant II. Let's say you know the sines of the corner. Do you also need information about the quadrant where the angle ends to find the angle of co-compatibility? Explain. No, sine features and angle tangents have enough information to determine where the angle ends, and thus the characteristic of the co-compatibility. π , show that you can solve the sin and cos exactly. If tan = 1 where 0 < p < π using pythagorean identity. Why is that? If tan = 1, then sin = cos, so sin 2 + cos 2 = 1 becomes 2 sin 2 p = 1, which gives $\sqrt{2}$ sin p = cos p = $\frac{1}{\sqrt{2}}$. This is due to p is a special angle $\frac{\pi}{4}$. 4 Your Turn 3 π , find the values of the sin and cos. 11. Considering this \approx 3.454 where π < p < $\frac{\pi}{2}$. 2 Write sin π in terms of cos π . sin π = cos π \approx 3.454 cos π . Solve for cos π and sin π . Integrate mathematical practices Focus = on critical thinking MP.3 Challenge students use identity sin 2 x + cos 2 x = 1 (3.454 cos π) 2 + cos 2 x, 11.930 cos 2 x + cos 2 x \approx 1.12.930 cos 2 x \approx 1 lesson to write identity, divided, which defines cos 2 x = 0.0773 1 - cos 2 x or tan 2 x = 1 - in terms of cos π . tan 2 x = 1 - cos 2 x cos 2 x cos 2 x = 0.278 Since cosine is negative Quadrant III, cos π = $\frac{1}{\sqrt{2}}$ and if you know the sine angle, how can you find the cosine and tangent angle? To find co-compatibility, you can use the identity 1 + cos 2 x = 1, replace the given value 2 2 sin 2 p and solve cos π . Then you can replace the sin 2 p and cos 2 p values with the identity of sin 2 tan 2 p = $\frac{1}{1 + \tan^2 p}$ to find tangent. Cosi sin π = $\frac{1}{\sqrt{2}}$ cos π \approx 0.960. © Houghton Mifflin Harcourt Publishing Total LESSON Work 12. What conclusions can you draw if you are only given information that you want = -1? Possible answer: Since the tangent is negative, the terminal angle must be either in sector II, where the sine is positive and the cosine is negative, or in quadrant IV, where the sine is negative and the cosine is positive. Specifically, sin π = cos, so sin 2 x + cos 2 x = 1, so cos π = $\pm \frac{1}{\sqrt{2}}$. Then sin π = $\pm \frac{1}{\sqrt{2}}$ and cost π = $\pm \frac{1}{\sqrt{2}}$. 2.2 Module 18 V2 985 V2 /2 Lesson 5 Language Support IN2_MNLESE389847_U7M18L5.indd 985 Communicate In Mathematics Let Students Work in Pairs. The first student explains what Pythagorean Theorem is when the second student takes notes. They change roles and repeat the procedure with Pythagorean's identity. Let them work together to describe the relationship between the two, as well as the similarities and differences. Encourage students images and symbols or oral descriptions when explaining to their partners. 985 lesson 18.5 19.04.2014 12:26:13. Discussion Explain how to find an angle in the touche relationship is similar to the process of solving the linear equation in two variables. By solving a linear equation in two variables, you can use one equation to find the EVALUATE expression as another for one variable, then replace that expression in another equation to get an equation in one variable that you can solve for this variable and use it to find the value of another variable. If you find sys and cosinity angle tangent relationships, you use the known tangent value and identity sin π = cos π tan π write the expression sin π in terms of cos π , then replace this DETERMINATION GUIDE expression with another identity sin 2 π + cos 2 π = 1 to get the equation that can be solved cos π , and then use the value cos π to find the value of sin π . 14th Important question check-In If you know only the sine or cosine angle and the quadrangle where the angle ends, how can you find other trigonometric relationship? If you know only sin or cost, you will find another, replacing the known value of Pythagorean identity sin π + cos π = 1 and solving unknown value. Then 2 2 sin π you will find tangents angle using the identity of the tan = $\frac{\sin \pi}{\cos \pi}$. In any case, use a cosyquadra, which ends in the corner, to choose the right sign for the relationship. Evaluate: Homework and Practice • Online Homework • Tips and Help • Extra Practice Find the approximate value of each trigonometric function. 1. π Considering that sin = 0.15 where 0 < p < $\frac{\pi}{2}$, find a waterfall = $\sin \pi$ = $\pm \frac{1}{\sqrt{1 - \cos^2 \pi}}$. 3. π Considering that cost = 0.198 where π < p < $\frac{\pi}{2}$, find sin = $\pm \frac{1}{\sqrt{1 - \cos^2 \pi}}$ = $\pm \frac{1}{\sqrt{1 - 0.198^2}}$ = ± 0.980 . Since p is located in Quadrant IV, where sinuiv&0; 0, blue = ≈ -0.980 . 3. 3. π Considering that blue = ≈ -0.447 where π < p < $\frac{\pi}{2}$, find kos π = $\pm \frac{1}{\sqrt{1 - \sin^2 \pi}}$. Exercise IN2_MNLESE389847_U7M18L5.indd 986 lesson 5,986 depth of knowledge (D.O.K.) COMMON CORE Mathematical practices 1-16 Recall of information MP.7 Using structure 17 1 Recall of information MP.6 Precision 18-19 1 Recall of information MP.7 Using structure 20 2 Skills/Concepts MP.4 Modelling 22-23 2 Skills/Concepts MP.3 Logic 24-25 3 Strategic thinking MP.3 Example of logic 1 Finding the value of other trigonometric functions sin p or cos p Exercises 1-8. 20 Example 2 Finding the value of other trigonometric functions based on the value of Tan p Exercises 9-17 21 Suggest that students draw a sketch of the angle described in the problem by placing the corner in the correct quadrant. Students can then write characters for each function of this quadrant so that they can remember to confirm the correct characters for calculated values. sin π = $\pm \frac{1}{\sqrt{1 - \cos^2 \pi}}$ = $\pm \frac{1}{\sqrt{1 - (0.54)^2}}$ = ± 0.839 Module 18 Exercises 18-19 VISUAL CUES π Considering that cos π = -0.54, where π < p < $\frac{\pi}{2}$, find sin π = $\pm \frac{1}{\sqrt{1 - (-0.54)^2}}$ = ± 0.895 . Practice Questioning Strategies © Houghton Mifflin Harcourt Publishing Company 2 Concepts and Skills 19/04/14 12:26 AM Using Pythagorean Identity 986 5. AVOID COMMON ERRORS 3 Considering that sin π = -0.908 where π < p < $\frac{\pi}{2}$, find a cos π = $\pm \frac{1}{\sqrt{1 - \sin^2 \pi}}$ = $\pm \frac{1}{\sqrt{1 - (-0.908)^2}}$ = ± 0.419 . If the replacement transformation sind into Pythagorean identity tan π = $\frac{\sin \pi}{\cos \pi}$, some students may forget the substituted expression coefficient. Check out that π < p < $\frac{\pi}{2}$, find cos π . Given this sin = 0.313 where π < p < $\frac{\pi}{2}$, cos π = $\pm \frac{1}{\sqrt{1 - \sin^2 \pi}}$ = ± 0.950 . Since p is located in Sector II, where cos π < 0, kossi \approx 0.950, sin 20 means (sin π) and same cosine, and encourage students to use brackets when making replacement. 2.7. π , find sin π . Considering that cos π = 0.678 where 0 < p < $\frac{\pi}{2}$, sin π = $\pm \frac{1}{\sqrt{1 - \cos^2 \pi}}$ = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = $\pm \frac{1}{\sqrt{1 - \cos^2 \pi}}$ = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuimast&0; 0, sin π = ± 0.872 sin π , angle π = ± 0.872 . Encourage students to use their calculators to check their results by checking that this 2 puna p is located in Sector III, where sinuim