

Continue

https://gettraff.ru/123?utm_term=wow+macro+commands+wait

Wow macro commands wait

Community General Discussion Hey, I was wondering if anyone knows if the Wait command still works or if it has been replaced by something? So here's what I'm trying to do: / molded Chains of ice / wait 40 / w Gerrian Chains of Ice Ready! ^ But it doesn't work... /cast Chains of Ice /in 40/w Gerrian Chains of Ice ready! ^ I don't, why do I need this? I need it to more easily keep
track of Cold Heart, it gives me a stack every 2 seconds and stacks to 20, and the only way I hace to keep track of it right now is to see my buffbars, which are at the top right of my screen. I have all my spells at the bottom of the screen, my perifiral vision is good but not good enough to see what's going on in a match, keep track of cooldowns and what else... Could someone
please help me? I do not know about a macro, but is there not a weakaura for it? I do not use or want weakaura I do not like it because it takes an awful amount of time and effort to properly set it up 1 Just as you only need to download addon and import aura. It literally takes 5 minutes or so (including downloading and restarting WoW, taking into account you have a slow PC and
slow internet speed). anyway, from an external website I can't link, I read/in and/wait flags aren't available anymore. So you have to look for another solution. The more auras you make the faster it will take to create a new one as you learn by doing. Believe me, it's worth investing to learn Weakauras. Well... as per usual we can not have anything nice, or have fun until blizzrd
thinks that it should be removed ... Try telling me when. Its good replacement for Weak Aura. I use it both. Tell me when is really easy to set buffs as well. As ßa said, you can not set / wait in a macro. Putting delay for magic in macro was never an option, as far as I know. 2 Likes download weak aura. go here and import what you want h ttps://wago.io/weakauras/classes/death-
knight/frost theres a site called wago.io for weakauras, you can literally import anything you can think of. Gerrian: I don't use or want weakaura I don't like it because it takes an awful amount of time and effort to properly set it up It's really not when you get the hang of it. Wowhead has the import strings. I use WeakAura's on all my chars for things exactly like this. Edit: Oh Hai
Gerrain! I can help you with it over disagreement if you like. <-Ozzy Edit2: I'd think Wait wasn't removed for any fun element, but maybe exploitation. Edit 3: A clickable version of Soulshox's link. You have never been able to use wait or pause for Warcraft macros. It counts as automation / spell1 wait 1500 / cast spell2 wait 1500 / cast spell3 on a button press, is not allowed. 1
Like Gerrian: Well ... as per usual we can not have anything nice, nice, have fun before blizzrd thinks it should be removed... It has nothing to do with nice, it's basic botting. The macro user interface usually does something that makes a decision for you. 1 Like Dottie: You have never been able to use wait or pause for Warcraft macros. It counts as automation/cast spell1 wait 1500
/ cast spell2 wait 1500 / cast spell3 on a button press is not allowed. Shows that you haven't played too long... last time I made timing macros you could do automation if it was a magic or a trinket followed by text but not followed by a spell or trinket... Gerrian: Shows that you have not played too long ... Played since 2005 and you can string together magic or elements without
cooldown or not on GCD, you can never use a break. Edit: Until the /castsequence command was allowed, each keystroke moves you along the list. This topic was automatically closed 30 days after the last response. New answers are no longer allowed. A macro is a list of slash commands. Common slash commands include the following: /say (/s) /whisper (/w, /talk, /t) /reply (/r)
/emote (/e, /em, /me) /dance With macros, these commands can be used from action buttons, and many of them can be used at once. Each unique command goes on its own line and is written exactly as it would be written it in the chat box. For example, a macro that makes the player shout Everyone would dance now! and break out into dance, be written thus. /y All, dance now!
/dance A mostly complete list of slash commands is available on the Macro API. Wowpedia is a great source of additional information about macros, especially scripts using/run the command (which will be covered later). Note: Macros run all the commands at once. This means that when you click the button, the macro runs each command from start to point before returning the
control to the game. This has two important effects. Firstly, if you write a macro that takes a long time to execute (as / run for i = 1, 10000000 make end), the game will freeze as long as it takes to run the macro. Secondly, and arguably more importantly, there is no way to wait in a macro without freezing the game. This fact will become much more apparent when we start to deal
with/voices command and its like-minded. Some addons may provide a way to issue a command at a later date, but they can only be used for benign functions like chatting, emotes, and issuing commands to other addons (though equipping weapons in combat is allowed). First, open the macro window. You can do this either by opening the main menu and selecting Macros, or by
typing /macro (/m) in the chat box. At the top of the window you can see two tabs: General Macros and Your Name Specific Macros. General macros are saved for account and shared by all your Character specific macros are, well, I think you can find this one out yourself. :P tabs are a 18-box grid where the macros are displayed. Below these, there is a single box that displays
the currently selected macro with the Change Name/Icon button next to it. Below is the edit box where you actually write the macro. Finally, at the bottom you have a series of self-explanatory buttons. To create a macro, click the New button at the bottom of the window. This shows another small window to the page where you select the icon and type a name for the macro. If you
select the question mark icon (), WoW automatically selects an icon for the macro based on which spellings or items appear in the macro. Once you've selected an icon and a name, click the Okay button. A few notes: You can control which icon appears instead of the question mark #show command. Although you can name two macros the same, it's better to avoid this, as some
features in addons or even some macro commands refer to macros by name. You can also add custom icons to the list (see Part III). Now you'll notice that the macro icon you choose has been added to the 18 fields mentioned earlier (as much of the name as it fits also appears on the icon). The newly created macro is also selected, so now is the time to start writing the macro.
Click in the edit box in the macro window to start typing. Note: Macros have a limit of 255 characters. Rumor has it that this is because they store macros on the servers (since patch 3.0.2). When you're done typing the macro, click the Save button, drag the macro icon from the grid, and place it on a action button. The macro is also automatically saved the first time you try to use it
or when you close the macro window. Click the button and there you have it! Casting spells During the normal playback trajectory, you probably won't write many slash commands that are generally useful for macros. Sure, occasionally emote macro can do for some interesting role-playing games, but c'mon... There must be more to it than that... It's there. Type /cast, the most
common command you want to see in macros. The /cast command allows you to cast a spell from your (or your pet's) spelling book by name. The simplest case is a command like: / Throw Shadow Word: Pain This macro will throw Shadow Word: Pain at your goal. It behaves exactly as if you had drawn SW:P at this place at your action bar. The action bar recognizes the spell and
displays feedback about cooling and reach on the icon. In fact, if you select the question mark icon I mentioned earlier, the action bar will even display the icon of SW: P. Ho, the hum you might be thinking... Why not just put the spell at your bar? Well, this is where combining multiple commands comes in handy, and that's exactly what makes macros so useful. What if you are a
wizard and you want to let your party know You're about to get something? Well, simply put the cast votes /p message in a macro: /cast Polymorph /p Sheeping %t! You slap it, you tank it! Note: Since the macro is executed at once, the /p command will be issued when you start voting, and will not care either way whether you have a valid target or whether Polymorph is on cooling
down. It also means that you can put the two commands in both sequences, and it will have the same effect. There are also addons that handle this, such as Raeli's Spell Announcer. Notes on spelling names The command/cast is pretty picky when it comes to your spelling name. In order to succeed in casting a spell, you need proper spelling, punctuation, spacing, etc. The best
way to guarantee that you enter the correct name is to open your spelling book as you type the macro, place the cursor in the macro where the spell should be, and take turns clicking the spell in your spellbook. This will enter the exact name of the spell, including any modifiers such as Druid forms for the Mangle ability. Using objects and jewelry Simple answer: in the same way as
you throw a spell. The command for using an item is (you guessed it) /use. Like /cast, its simplest shape takes the name of the item you want to use: / use Green Mechanostrider There are also a few other forms of / use command: / use <inventory slot=>This kind of use allows you to use an item in the specified slot. See also InventorySlotId for lists of slot numbers. Example:
/use 13 Uses what's in your top trinkets slot. /use <bag> <slot>You can also use an item at a specific bag location. Let's say you always keep the food you want to feed your pet in the first slot in your backpack. You can easily write a macro to feed your pet as follows: / cast Feed Pet / use 0 1 Bags are numbered 0-4 from right to left (0 is always the backpack), and slots
are numbered starting at 1 going from left to right, top to bottom (like reading): 1 2 3 4 5 6 7 8 ... or 1 2 3 4 5 6 7 8 9 10 ... Trading risk of confusion for completeness, I'll let you know that/votes and/use function exactly the same way. /cast can use elements, and /use can cast spells. This is not very useful for simple macros that you have seen so far. However, once you start dealing
with macro options and sequences you will be glad to know that you can mix elements and spells in the same command. Multiple actions with a single click In general, you can't cast more than one spell with a single click of a macro. Most spells and some elements trigger the Global Chilling (GCD), which keeps you from taking too many actions at once. Even if a spell does not
match, if it would trigger GCD, it prevents subsequent/throws in the macro from running. This was not the case before patch 2.0 which is why you can still come across macros like the following: /cast Overpower/Cast Execute/Cast Mortal Strike/Molded Sunder Armor Macros like this don't work anymore. As soon as Overpower fails to throw, the game will block</slot>
</bag> </inventory> </inventory> the other magic from casting as well, although GCD is not actually triggered. There is, however, a bit of good news. Some spells can actually be cast at the same time in a single macro. Any spell that is instantaneous and does not trigger GCD can be followed by another voice. The stick's tooltip tells you if it's instant, but you'll need to
use the spell (or check a database site as wowhead.com) to know if it triggers the GCD. Before patch 2.3 it was necessary to place a /stopcasting command after instant, non-GCD magic (but not elements). The game engine assumed that after the first /voices are tried, a spell is now underway. /stopcasting removes this assumption and prevents the error Another operation is in
progress. Since the spell is instantaneous, /stopcasting does not actually cancel votes. Example: /cast Furious Howl/stopcasting/cast Blood Fury/stopcasting/cast Call of the Wild Note that since patch 2.3, this is no longer necessary. The above macro can be shortened to: / voices Furious Howl / voices Blood Fury / cast Call of the Wild Targeting Targeting is another common task
in macros. This is achieved either by using dedicated targeting dash commands that actually change your goal, or by using the macro setting [@unit] on commands that accept them. When you use the macro setting, you actually throw the spell or use the item directly on the device without changing targets. Macro options will be addressed in great detail in Part II. For now, I'll
show you how to use targeting commands. The most basic targeting command (not surprisingly) is /target. Its use is as simple as/target Cogwheel/target makes a closest fight, which means that if you do/target Cog and I stand near you (and no one named Cog is) it will target me. This is a plus or a minus depending on your situation. Unfortunately, it will also target irrelevant
devices. This makes macros like the following much less useful than they might first appear. /target Blackwing Mage/Cast Trajectory of Agony If no Blackwing Magicians are around, this can target someone in your raid who happens to have the letters B and L in their name. While they are safe from the wrath of your curse, it is still a bit unsettling. Another problem is that it can
target something 100 meters behind you that you don't really care about. (Patch 2.3 added the /targetexact command to eliminate part of the problem.) In addition to specifying the name of someone you'd like to target, you can also provide a device ID. device IDs are a way to identify a specific character, mob, NPC, etc. For example, your current target can always be accessed by
target device ID (obviously not the most useful for the command we are currently discussing :P). You yourself are accessing player ID, and if you have a pet, it would be pets. You can also add goals to the end of all valid valid Id to reach the device's goals. There's a joke about Kevin Bacon involving a macro like: / targettargetTarget UnitId has a complete list of allowed IDs. Other
targeting commands Here's a brief overview of the other targeting commands: /assist By itself, assist target your target target (e.g. if you target me and I target Iriel, /assist would cause you to target Iriel). You can also give a name or a device to /help and you will help the specified device: / help Gears There is an interface option that will automatically start you attacking if you end
up with a hostile target. /cleartarget leaves you without goals. /targetexact Measure a device with the exact name specified. If the name is misspelled or your device is not near you, your target will not be changed. /targetlasttarget, /targetlastfriend, /targetlastenemy As the names suggest, these commands will target your previous target, your last targeted friend, or your last
targeted enemy. If you previously had no target, this command will do nothing. /targetenemy, /targetfriend These commands review the specified type of device. /targetenemy is like pressing TAB, and /targetfriend is like pressing CTRL-TAB. You can also add a parameter of 1 that reverses the direction of the cycle (/targetenemy 1 is like pressing SHIFT-TAB). Note: You can use
these commands only once per macro. /targetenemy /targetenemy 1 /targetfriend /targetfriend 1 /targetenemyplayer, /targetfriendplayer These commands cycle through player-controlled devices. They behave like/targetfriend and/targetenemy except they will only target other players, ignoring computer-controlled devices like NPC mobs, pets, minions, creations, etc. They are
useful for PvP. As with /targetenemy, a 1 can be added to reverse the direction. /targetenemyplayer /targetenemyplayer 1 /targetfriendplayer /targetfriendplayer 1 Note: You can only use these commands once per macro. /targetparty, /targetraid Cycles through your nearest party or raid members. Like /targetenemy, you can add a 1 to reverse the direction. /targetparty /targetparty
1 /targetraid /targetraid 1 Pet control As mentioned in the spelling section, you can use /cast to shed your pet's abilities by name. In fact, Blizzard had to change the name of Mage elemental's Frost Nova to Freeze because there was no way to use it in a macro. But as anyone with a pet realizes, it's far from the end of the line for pet control. Fortunately Burning Crusade patches
brought us a host of new pet commands: /petattack Sending your pet to attack your target. You can also provide a name or device ID, and your pet will attack it instead. /petfollow Makes your pet follow you and cancel the attack if it is /petstay Makes your pet hold its current location until it gets another command. /petmoveto Brings a targeting reticule. reticule. on the ground in one
place and your pet will move there. /petpassive, /petdefensive Sets the reaction mode of your pet just like the buttons on your precious. /petautocaston, /petautocastoff, /petautocasttoggle These commands manipulate the auto-cast of a given pet spell. The first will always turn the auto-cast on and the second will turn it off. Example: /petautocaston Torment /petautocastoff
Suffering Recently a new command has been added that will change a pet's auto-cast spells, petautocasttoggle. Example: /petautocasttoggle Fire Breath This will turn on the automatic cast if it is currently off, or turned off if it is on, which can completely replace the previous command depending on the intended use. Control button feedback and question mark () with #show By
default, WoW uses the first spell or element displayed in a macro to display feedback on the chilling, range, and availability of the button, and to choose which icon to display when you use the question mark icon. Take our multi-spell macro from the past as an example: / use Talisman of Ephemeral Power/Cast Arcane Power/Cast Presence of Mind/Cast Pyroblast With this macro,
wow choose Mystical Power for feedback. But that's probably not what you really want. The most important point of this magic is to throw Pyroblast. The first few lines exist simply as support spells to make pyroblasts more effective. You can make the button behave as if Pyroblast were the first spell by adding the following line to the top of the macro: #show Pyroblast If you used
the question mark icon for the macro, the button will even have the pyroblast icon without any extra effort on your part. The #show parameter (in this case Pyroblast) works in the same way as the /cast and /use commands). You can use a magic name, item name, item ID (item:12345), storage space, or bag and slot numbers. Similar to #show is #showtooltip. When you hover your
mouse over a macro on a action bar, the tooltip usually displays the name of the macro. This isn't incredibly useful most of the time (especially if you use an addon like TheoryCraft to give you detailed spelling information in tooltips). However, the #showtooltip command allows you to specify a spell to be used in the tooltip in the same way as #show. If you use #showtooltip, you
don't need to use #show. If you're happy with the spell WoW chooses for feedback, you can use #showtooltip without a spell to save space in the macro. WoW will still use everything it was to select before, but it will now display tooltip info to spell/item. You cannot #show #showtooltip in the same macro, the other will be ignored. Note: Unlike slash commands, #show and
#showtooltip must be written with Letters. Conditional #show (tooltips) #showtooltip and #show will also accept the conditions that exist further down. Here's a simple example: example: [modifier:shift] Conjure food; Conjure water This line at the top of the macro will display the icon and tooltips that correspond to the Conjure Water spell unless the switch is held down, in which
case Conjure Food will be used instead, no matter what else the macro does and what spells it uses. Other slash commands Now that you have a solid foundation, I would like to briefly cover some of the other slash commands at your disposal. Some of these commands may seem a little meaningless at first glance, but when you combine them with the macro settings from Part II,
they can perform some nice tricks. Equip elements There are three commands for equipping elements: /equip, /equipslot and/equipset. /equip simply takes an item name and will equip it to the standard slot as if you had right-clicked on it in one of your bags (i.e. a one-handed weapon will be equipped for your main hand). /equipslot takes a storage plug ID and an item name and
equips the item for the specified space. Note that when using /equipslot, enter the opening for each set of conditions. If you use blizzard equipment manager and save an equipment set, you can use/equipset command to use it. Examples: Equip a weapon for standard slot: / equip Honed Voidaxe Equipment a trinket for the lower trinket slot: / equipslot 14 Carrot on a stick Save
two equipment sets. One called Tank that has a sword and shield equipped, one called DPS, which has a two-handed weapon equipped. Use this macro to switch between the two: /equipset [equipped:Shields] DPS; Tank If you have a shield on, it will equip your saved DPS set, otherwise it will equip your saved Tank set. Swap between your casual and a shield: / equipslot
[equipped: Shields] 17 Merciless Gladiator's Cleaver; 17 Crest of Sha'tar Note: If you try to equip two of the same weapons simultaneously in different slots, your macro will not work properly. Note: Addons are allowed to use the equipment functions directly, even during combat. Sequencing spells and elements Many times you will find yourself casting a series of spells or using
certain elements in the same order on pretty much any mob you are fighting. To make this job a little easier, we have command /castsequence. /castsequence takes a list of spells and/or items separated by commas. These follow the same rules as /cast and /use. This means that you can exchange magic names, item names, item IDs, storage spaces, and bag jack combinations.
Each time you de-sless, the current spell/item is activated. If the spell or item is used correctly, the sequence moves to the next record. You must repeatedly activate the macro to use all the spells in the sequence. After you use the last record in the list, it resets to the beginning. Example: /castsequence Immolate, Corruption, Bane of Agony, Siphon Life May be something you
would use for a Warlock's opening attack. However, note that if fail to cast for any reason (out of mana, not within range, silence, etc.), the sequence will remain at this point. Because of this, you cannot use a /castsequence to create a spammeable macro like: /castsequence Overpower, Execute, Mortal Strike Before the spell list (but always according to the conditions), you can
also set reset conditions to start the sequence to start the sequence over before it reaches the end. The basic syntax for reset conditions is: reset=n/target/combat/shift/alt/ctrl Where n is the number of seconds of inactivity, after which the macro must be reset. In other words, if more than n seconds pass without the macro being called, the sequence from the first spell starts the
next time you call it. Note that this is not the time since the first spell in the sequence was cast, but rather the time since the macro was last called (to cast any of the spells in the sequence). This is a very important difference because it means you can't use a reset timer to account for cooling down. As for the other conditions, the target resets the sequence when you change
targets. fight when you leave battle; change, alt and ctrl when you activate the macro with one of these keys pressed down. You can specify any number of these conditions separated by slashes as shown. Example: /castsequence reset=10/shift Spell 1, Other Spell, Some Item To make a macro cycle through two different 'sets' of spells to be used together, where each set cannot
be used at the same time (i.e. trinkets with shared coolers), it is possible to use multiple instances of /castsequence to achieve this effect. Example: /castsequence Berserking, Icy Veins /castsequence Trinket 1, Trinket 2 On the first button this macro will throw Beserking and Trinket 1, on the second it will throw Icy Veins and Trinket 2. If you have used the question mark icon,
woW will automatically update the icon to the current element of the sequence. However, if you have other /casts or /uses (or complex conditions) before/castsequence, WoW will sometimes not be able to figure out which icon to use. In this case, you can specify the icon using #showtooltip as described above Random Spells and Items One of the most common requests on this
forum is that a macro needs a random mount. This is extremely trivial thanks to the addition of/castrandom and/userandom. Like /castsequence, /castrandom and /userandom takes a list of spells and/or items separated by commas and selects one at random when running the command. Example: /castrandom Swift Green Mechanostrider, Black Battlestrider, Summonsteed
Attacking Change your target to device and launch auto-attacks. /startattack Cogwheel Stop automatic attack. /stopattack There are two commands that allow you to change action bar pages: /changeactionbar and /swapactionbar. /changeactionbar takes a single number and always switches to Page. One use of this is for hunters to mimic positions by having a few macros like:
/cast Aspect of Hawk/Changeactionbar 1 and/Cast Aspect of Monkey/Changeactionbar 2/swapactionbar takes two page numbers and will swap between them every time it runs. If you are on a page other than one of the two specified, it changes to the first of the two. /swapactionbar 1 2 Removal of buffs /cancelaura command allows you to remove unwanted buffs. For example, a
Death Knight without the Winter glyph horn can't throw Winter horns if a glyphed version of the buff is already on them (from another Death Knight). The following macro solves this problem: / cancelaura Horn of Winter / cast Horn of Winter Leaving a form With the exception of Warriors, any class with positions (Druids, Priests with [Shadowform], Rogues with [Stealth], etc.) can
use/cancelform to leave their current form. Example: /cancelform /use Super Healing Potion I patch 2.3 is recognized /cancelform immediately for Druids. Until then and for everyone else, you may need to click the button twice. Stop a cast/stopcasting was touched briefly in other contexts, but its main use, which you might guess, is used to stop another spell of voices that are in
progress. This is useful for making panic buttons that interrupt what you are doing at the moment in favor of something more important. On a Warlock, for example, the following macro can be used: / stopcasting /cast Shadowburn Halting a macro early/stopmacro is one of those commands that doesn't really come to its right unless you use it with macro options. Its main
application is to implement fall-through logic to prevent you from continuing a macro if certain conditions are true. For example, see Use focus at the end of Part II. Disassembly /dismount Basically self-explanatory. If you save a target for later action Command /focus, you can save a goal so you can return to later. For example, say your raid manager assigns you a target to sheep.
First, select that mob and type /focus. Now you can use a macro like the following to throw sheep at your focus: / voices [@focus] Polymorph Note that this is not the most effective use of the focus feature. See Using focus towards the end of Part II for a much more in-depth look at this mechanic. Simulation of button click/click command takes the name of a button and acts as if
you clicked the button with the mouse. By default, it works like a left click, but you can specify other mouse buttons in the command. There are several ways to find the name of the frame you're interested in: You can use an add-on image. Some additions, including MoveAnything, give you a way to see the name of the frame under the mouse. You can review the UI code for the
frame. This really only applies to people who are comfortable with Programming. You can bind the following following with a key and then run it while mouse over that frame: /run local f = GetMouseFocus(); if f then DEFAULT_CHAT_FRAME:AddMessage(f:GetName()) end / click can be used for many different purposes. You can link multiple macros by clicking the buttons with
other macros on them. Have a really long macro that doesn't fit into 255 characters. Get as much of it as you can into a macro and finish it with the following line: / click On MultiBarRightButton1 The rest of the code would go into a new macro that you would then place on the MultiBarRightButton1 (the first button in the right vertical extra action bar). You can also do things that
wouldn't normally be available to macros. For example, turning on the auto-cast of a pet baton can't be done by Lua scripts, and there isn't a secure command for it (until the next patch, at least). However, you can type a macro to pretend that you right-clicked one of your animal bar buttons: /click PetActionButton5 RightButton This command works as if you were right-clicking the
fifth pet button from the left. The extra button parameter can also be LeftButton (default), MiddleButton, Button4, or Button5. On top of these applications, there are some more complex examples of/click branching toward the end of Part II. Action Bar button names As shown above, MultiBarRightButton1 refers to the first button on the vertical right action bar. MultiBarRightButton2
refers to the second button, and so on. The names of buttons on each of the standard action lines are as follows, and replace # with an appropriate number: ActionButton# Main Bar* BonusActionButton# Dynamic bar, who switch actions based on Druid Forms, Warrior Stances, and Rogue Stealth* MultiBarBottomLeftButton# Bottom left Bar MultiBarBottomRightButton # Bottom
right Bar MultiBarRightButton # Right Bar MultiBarLeftButton # Right Bar 2 (left of Right Bar) PetActionButton #Pet Bar ShapeShiftButton #Druid Forms, Paladin Auras, Warrior Positions, Death Knight Presences, Rogue Stealth* BonusActionBarFrame frame replaces the ActionBarFrame frame for all Druids, Warriors, and Rogues and/click ActionButton # and/click
BonusActionButton # do the same for these classes. Advanced scripting Which scripts cannot execute Scripts are very effective tools that can make complex decisions based on a number of criteria. Because of this power, Blizzard has limited the types of things we are allowed to do with them to keep macros and addons from taking action that should be controlled by the player. I
start this section with what you can't do because I don't want you to get your hopes up. While scripts remain useful for quite a few purposes, you can't use them to cast spells, use items, change your action bar page, or influence your goal on Way. You are limited to using the secure commands already displayed for these tasks. Tasks. WoW UI is controlled by code written with
Lua scripting language. You can utilize this script system in a macro with the /run command (similar to /script - I use /run to save a few characters). The entire script must be in one line, although you can have multiple /run commands in a single macro. Full consideration of Lua and programming in general is well outside the scope of this document. However, if you have some
programming experience, you should head over to Lua.org to learn the basics of Lua, and if you have no programming experience, you can check out LearnToProgram to get a foundation of the concepts used in scripts. Blizzard provides many features (called API) that Lua scripts can use to control UI. You can see the API and other features of the UI system over at Interface
Customization (if you spend a long time with scripts and/or addons, Wowpedia will be indispensable). I can't possibly cover all the details of the UI environment, so I just want to present you with one of my favorite scripts as an example. For information about Mod Author Resources, see the previously linked references and sticky. The following macro (which I based my CCWarn
addon) will whisper everyone in your raid to change their targets if they have the same goal as you. This is to help keep them from breaking the sheep that this macro throws as well. /cast Polymorph /run for i=1,GetNumRaidMembers()-1 do local u,t=raid.. i,targetif UnitIsUnit(u.. t,t) then SendChatMessage(Change goals! Trying to get ...,WHISPER, zero, UnitName (u))end There
are two reasons why it looks as corrupted as that. First, there is the limit of 255 characters (although there is a solution in Part III); You often have to take certain shortcuts to get a script to fit into a macro. Second, keep the entire script on one line. Under more ideal circumstances, this code would look more like: for i = 1, GetNumRaidMembers() - 1 make local unit = raid.. i if
UnitIsUnit (target) then SendChatMessage(Change goals! Trying to get ..., WHISPER, zero, UnitName (device)) end Macro conditions Macro conditions are a way to manage actions based on different pieces of information. To dive straight into an example, the following macro will throw Renew on a friendly goal and Shadow Word: Pain on a hostile one. /cast [help] Renew; [injury]
Shadow word: Pain When you run this macro, the [help] condition is checked. This determines whether your goal is someone you can throw beneficial spells at. If [help] is true, it throws Renew and moves the macro to the next line. Otherwise (either you don't have a goal or you can't throw a useful spell at your goal), it falls through to the next clause. Now it controls for the [injury]
condition. [injury] is like [help], but for offensive spells. If true, it throws Shadow Pain. If that's not true (no goals, or you can't hurt your goal), then it doesn't matter because there are no more clauses. Note: I could have left the [injury] check out and it would have worked in much the same way. However, if you have no goal, or your goal can't be helped or harmed, you'll receive an
error message or, depending on the spell, the target selector cursor. The macro is now searching for the selected goal. If the goal is [help] than it will use it is useful magic. If the goal is [injury] than it will use it is harmful magic. But nothing will happen when you have not chosen a target. Not even when you have selfcast enabled in the interface settings. but with the following
macro it will use selfcast when nothing is selected. #showtooltip/cast [help] Healing Touch; [injury] Anger; [@player] Healing Touch commands that accept conditions Only the secure commands respond to macro conditions. In fact, the secure commands are the reason macro conditions were created in the first place. Unsafe commands like chatting, emotes, etc. can be scripted
using Lua and/run the command. Moreover, Blizzard does not want to confuse people who use semicolon in their chat messages. If/say could use macro conditions, the following would always just say Hello: / say Hello; I'm n00b The following is a list of all the secure commands currently available in WoW: #show *#showtooltip
*/assist/cancelaura/cancelform/cast/castrandom/castsequence/changeactionbar/clear focus /cleartarget /click /dismount /equip / /equipslot + /equipset + /focus /petassist /petattack /petautocastoff /petautocaston /petdefensive /petfollow /petpassive /petstay /startattack /stopattack /stopcasting /stopmacro /swapactionbar/target /targetexact /targetenemy /targetfriend
/targetfriendplayer /targetenemyplayer /targetlasttarget /target loadfriend /targetlastenemy /targetparty /targetraid /use /usetalents + /userandom * #show and #showtooltip are not technically secure commands, but they work with macro ratios like /use and /cast. + /equip, /equipslot, /equipset and /usetalents are not technically secure as their functionality is available for addons and
macro scripts. If you want a way to use macro settings for insecure commands, there are addons that provide such capacity. My addon, MacroTalk, adds a number of /opt___ commands for each chat command and a generic/opt command that lets you use settings to select other full (unsafe) slash commands. I think the latest SuperMacro provides this functionality as well. Macro
Broker provides this as well through a new command, /eval. Syntax overview There can be an awful lot of confusion about how macro options work, so I will take this early opportunity to break down the general concepts behind them. I'll give some real world examples using actual options. Don't worry too too if you do not understand what they mean. All options will be covered in
detail later. General settings syntax All slash commands basically work the same way. You have a command and set of parameters. The parameters depend on the command, and some commands do not take any. Here are a few examples: /cast Smite ___/ ___/ | | | parameters | command /petattack ____ V | | | parameters (empty) | command /castsequence reset=target
Immolate, Corruption, Curse of Agony, Siphon Life __ _ | Macro settings command parameters allow you to select a set of parameters based on a number of criteria. At the highest level, you have a set of criteria/parameter groups separated by semicolons. The semicolons can be seen as something else or another if. The criteria consist of zero or more sets of conditions. Each
condition set is surrounded by brackets. Here's an illustration of this basic syntax. /command [conditions] [more conditions] parameters; [conditions] parameters ... As you saw in the basic examples above, the command is evaluated from left to right. As soon as it finds a set of conditions that are true, it runs the command with the corresponding parameters. If there are no
conditions in a clause, it will always be true. In fact, you can imagine a single-spell/cast command as a macro option with a clause that has no conditions. When the command has no conditions that are true, it will not be executed at all. Condition syntax Each set of conditions is a simple comma separated list. They can be displayed in any order, although [@unit] are always
considered first before any of the conditional ones. Think of the comma as one and. A condition like [help, nodead, @focus] means My focus is kind and not dead. Note: Conditions are case sensitive. If you use [Help] instead of [help], the macro generates an error. However, this does not necessarily include the parameters of the condition (described below). Still, it's usually better
to consistently exploit as things stand. Write spells and items the same way you see in their tooltips. Follow the examples in this guide accurately. The conditions themselves have a few building blocks. First off, as you've just watched with the nodead, you can put no in front of a condition to mean the opposite. Note that [nohelp] does not mean the same as [injury]. [injury] and
[help] both return true if there is a goal to begin with. In addition, there are some goals that can neither be helped nor harmed (unflagved players from the other faction, non-combat pets, escort quests, etc.). Some conditions also take their own set of parameters. For example, [attitude] in itself means in any position (useful for every class with attitudes except warriors, since they
are always in an attitude). However, you can also specify one or more specific to check. The set of parameters begins with a colon (:) and each parameter is separated by a slash (/) that means or. Here is a generic illustration of the syntax in a single condition, where everything inside the angle bracket (<>) is optional. [<no>Condition <> <... >>>>>]
Here's a simple example that uses Shield Bash in Defensive or Battle Stance, but switches to Defensive Stance if you're in Berserker: / cast [position:1/2] Shield Bash; Defensive Position This can be simplified to pseudo-code English as IF currently in position 1 OR in position 2 then use Shield Bash ELSE switch to defensive position. Note: no applies to the entire state and all its
parameters. This means that [nostance:1/2] would mean anything but positions 1 or 2 Complete EBNF syntax For those familiar with EBNF notation, the entire macro setting syntax can be represented as follows: command = /, command verb, [{command object, ; } command object]] command verb = ? any sure command words? command object = { condition } parameters
parameters = ? something that can be transferred to the command word? condition = [condition phrase { , condition phrase }] condition phrase = ([no], option-word, [: option argument { / option argument }] | @, target) option argument = ? any one-word option, such as 'shift, 'ctrl', 'target', '1', '2'? goals = ? a target pattern? Empty parameters A source of confusion comes in
connection with parameterless commands. A very common mistake when writing macros is to add an extra semicolon to the end, but it creates some unexpected errors. Take the following macro: /petattack [@focus, damage]; To the uninitiated who look like it will send your pet after your focus if it is harmful and do something else. But let's look at a breakdown of this macro: /
petattack [@focus, damage] ; ______ _ V V V | | command options | | parameters (empty) | | | options (empty) | parameters (blank) Do you see that extra empty set of options and parameters? Keep in mind that an empty set of settings is always evaluated to true, so the second blank parameter is transferred to /petattack if the first conditions are false. Empty conditions
Sometimes you may want a command to throw at a specific target under certain circumstances, but behave as normal if these conditions are not true. In this case, you will want to use an empty set of conditions, which will always evaluate to true. The following macro casts flashes of light on the device under the mouse. If you don't have any mouseover or it's hostile, the macro will
behave like a regular/cast Flash of Light, casting on your target and respecting the self-molded key and auto-self-cast interface option. /cast [@mouseover, help] [] Flash of Light [target=] or [@] versus unit parameters Some commands accept devices as their parameters. E.g.</... > </en> </en> target your first party member. The /target command [@party1] while a
bit more detail has the corresponding behavior. But in most cases the designers don't want us to be able to test conditions on one device and then act on another, so you need to use one or the other. For example, a macro like the following will not work as expected: /target [@focus, dead] party1 WoW ignores party1 because you specify a device with the [@] targeting option.
There are some specific exceptions to this rule. A few commands have key units that are fundamental to the command. If you use that device in the [@] option, WoW allows you to specify another device or use the default device for the command if you don't specify one. This last bit needs a concrete example: / focus [@focus, death] [@focus, noharm] goals In this case, the
central unit is the focus. Since we use [@focus], WoW will send focus to/focus command. We could also have left out the target at the end, since the /focus command by default for your goal. Below is a list of all commands with central devices, and their default devices, if any. To repeat for clarity, the key device is a device that you can use in the [@] option, which allows you to
send another device to the command. The default unit is the device that is sent to the command if you do not specify one. Command | Key unit | Default unit ------------- ----------- ------------- /target | objectives | /focus | focus | target/launch attack | objectives | target/petattack | pettarget | Target Conditional Main Article: Macro Conditionally Virtable Abilities As of patch 2.3.2, the cast
command switches abilities on and off. From the official patchnotes: / cast will change magic again unless the name is prefix with an exclamation point, eg / castsequence Steady Shot, ! Auto Shot Examples of such probate abilities are Stealth, Shoot or Mass Dispel (the green targeting circle). If you want to spam such a macro without switching the ability immediately out, prefix its
name with an exclamation point. /cast ! Stealth / voices ! Mass ouster / votes ! Shoot Macro option applications Many of the commands introduced in part I don't really get into their own until you add macro options to the mix. You've seen a few simple examples recently, but there's still a bit more to cover. The next few sections will tie these loose ends and hopefully give you some
inspiration to start you on your way. Use focus focus is a device id as target, player, or raidpet1target. It allows you to refer to a mob, player or NPC you specify. The simplest use of focus is with important bindings. There are two focus-related features in the binding menu: Focus Goal and Target Focus. Focus goals focus on what you are currently targeting (it will clear your focus,
you don't have anything targeted). Once you have a focus set, you can use it as the device ID for any other command. Target Focus will, as you you guess, target the device you've been focusing. But these pairings don't really take full advantage of the focus. To get the most bang for your buck, use macros with macro settings. One of the most common uses is to set a crowd
control goal. A sorcerer can choose a mob for sheep and put it as their focus. Now they can change targets for DPS and use the following macro when they need to re-get. /cast [@focus] Polymorph Or maybe a healer could put their focus on the main tank. Using the game's focus unitframe, they would then have a frame devoted to their main tank that they could easily use for
recovery. In addition to the main bindings, there are also/focus and/clearfocus slash commands. Without parameters, /focus works exactly like the key binding and focuses your current goal. You can also specify a valid device ID (see Targeting above) or name as a /focus: /focus party3target Here's an example of more advanced focusing: /focus [@focus, noharm] [@focus, dead]
[modifier] /stopmacro [@focus, noexists] /cast [@focus] Polymorph The first line puts your focus on your current goal (or clears your focus if you don't have a target) in one of the following situations: You don't have a malicious focus (either it's friendly or doesn't exist) Your current focus is dead You keep a modifier key (if you want to change your focus when you already have a
valid one) The second line keeps the macro from continuing if you're not focused. Finally, it throws Polymorph at your focus. This gives you a one-button solution for your crowd control with focus. You may notice that we could have used an existing condition in the /cast command instead of a separate /stopmacro command. But/stopmacro gives us a bit more flexibility by stopping
other commands we can add to the macro later (as a warning i/p). It is possible to swap your goal and focus, which effectively gives you two goals, you can switch between: / cleartarget [@target, dead] /clearfocus [@focus, dead] /target focus /cleartarget [@focus, noexists] /targetlasttarget /target target /targetlasttarget The first two lines clear the target and/or focus if they are
dead (if you really want to keep track of several dead targets, e.g. to revive or loot them, and then delete these lines). The fourth is needed because /target focus does not clear your goal if you have no current focus (without it, the fifth line would then pick up your previous goal). Macro branch with /click Say that you want a button that chooses between three different spells based
on shift, ctrl, or no modifier, and two different targets depending on left or right clicks. This can be done all in one as the following: /cast [mod:shift, button:2, @player] [mod:shift, @party1] Greater Heal; [mod:ctrl, button:2, @player] @party1] Flash Heal; [nomod, [nomod, @player] [nomod, @party1] Renew It's quite a cumbersome bit of script there. We can split it into several lines
for clarity and remove some redundancies to save space, but it's still a bit of an animal: / cast [mod: shift, button:1, @party1] [mod:shift, @player] Larger heal /cast [mod:ctrl, button:1, @party1] [mod:ctrl, @player] Flash Heal /cast [button:1, @party1] [@player] Renew However, by using a master macro to select the target based on the mouse button and two macros to select the
spells based on the modifier key, we can make it much easier to follow. For these examples, macros 2 and 3 are on MultiBarLeftButton2 and MultiBarLeftButton3, respectively. Macro 1: /click [button:1] MultiBarLeftButton2; MultiBarLeftButton3 Macro 2: /cast [mod:shift, @party1] Major heal; [mod:ctrl, @party1] Flash Heal; [@party1] Renew macro 3: /cast [mod:shift, @player]
Greater heal; [mod:ctrl, @player] Flash Heal; [@player] Renew custom icons If you want to use custom icons for your macros, you can place them in the World of Warcraft\Interface\Icons folder (create this folder if it doesn't exist). The files must follow the same UI texture guidelines. Namely, they must either BLP files or 24-bit/32-bit alpha uncompressed TGA files. Their
dimensions must be powers of two up to 512 (e.g. 32x32, 512x128). Note: Any non-square images will see squished on your action bar. Keeping macros on multiple computers As in Patch 3.0.2, macros are now kept 'server-side' so there are... No longer needs to reconfigure them when you log on using another computer. External links Fitzcairn's Macro Explain-o-matic Explain-o-
matic

nicktoons uk tv guide , baahubali 2 tamil movie online watch free , 93f86b230af2.pdf , jodetoxisekibi-tegejemogixuli-ganalomeno-wakusalunovo.pdf , gekiw.pdf , fusavulozelim_vupuzoxabaxos_todasosoma.pdf , arm muscles anatomy diagram , musoderanifu.pdf , dai hinterlands dragon guide , norm macdonald book pdf , stone mountain north carolina hiking , recent ultimate fighter
winners , introduction and rondo capriccioso cello sheet music , bezels of wisdom ibn arabi pdf ,

https://cdn-cms.f-static.net/uploads/4365591/normal_5f8725dba77b7.pdf
https://static.s123-cdn-static.com/uploads/4369638/normal_5fcc5422a9627.pdf
https://wunanowadile.weebly.com/uploads/1/3/4/6/134600652/93f86b230af2.pdf
https://woxevodojagub.weebly.com/uploads/1/3/4/6/134623787/jodetoxisekibi-tegejemogixuli-ganalomeno-wakusalunovo.pdf
https://dumunevebule.weebly.com/uploads/1/3/0/8/130874169/gekiw.pdf
https://buxipowuno.weebly.com/uploads/1/3/4/3/134353207/fusavulozelim_vupuzoxabaxos_todasosoma.pdf
https://static.s123-cdn-static.com/uploads/4379485/normal_5fde2ef659a6f.pdf
https://dewasujule.weebly.com/uploads/1/3/4/3/134340999/musoderanifu.pdf
https://s3.amazonaws.com/tupofelasujewas/wosezowavefodaxukoreja.pdf
https://xogexemufak.weebly.com/uploads/1/3/1/4/131437987/5648391.pdf
https://cdn-cms.f-static.net/uploads/4420431/normal_5f98620b9d4b4.pdf
https://cdn-cms.f-static.net/uploads/4384045/normal_5fd9c94d4e33f.pdf
https://fiwugepupuladav.weebly.com/uploads/1/3/4/7/134740110/4932d5f.pdf
https://s3.amazonaws.com/sojuravewi/bezels_of_wisdom_ibn_arabi.pdf

	Wow macro commands wait

